Proof of Theorem negantlem10
Step | Hyp | Ref
| Expression |
1 | | leao4 165 |
. . . . 5
(a ∩ c) ≤ (b⊥ ∪ c) |
2 | | leor 159 |
. . . . . . . 8
(a ∩ c) ≤ (a⊥ ∪ (a ∩ c)) |
3 | | df-i1 44 |
. . . . . . . . 9
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
4 | 3 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪ (a ∩ c)) =
(a →1 c) |
5 | 2, 4 | lbtr 139 |
. . . . . . 7
(a ∩ c) ≤ (a
→1 c) |
6 | | lear 161 |
. . . . . . 7
(a ∩ c) ≤ c |
7 | 5, 6 | ler2an 173 |
. . . . . 6
(a ∩ c) ≤ ((a
→1 c) ∩ c) |
8 | | negant.1 |
. . . . . . . 8
(a →1 c) = (b
→1 c) |
9 | 8 | ran 78 |
. . . . . . 7
((a →1 c) ∩ c) =
((b →1 c) ∩ c) |
10 | | u1lemab 610 |
. . . . . . . 8
((b →1 c) ∩ c) =
((b ∩ c) ∪ (b⊥ ∩ c)) |
11 | | leor 159 |
. . . . . . . . 9
((b ∩ c) ∪ (b⊥ ∩ c)) ≤ (c⊥ ∪ ((b ∩ c) ∪
(b⊥ ∩ c))) |
12 | | ancom 74 |
. . . . . . . . . . . . 13
(b ∩ c) = (c ∩
b) |
13 | | ancom 74 |
. . . . . . . . . . . . 13
(b⊥ ∩ c) = (c ∩
b⊥ ) |
14 | 12, 13 | 2or 72 |
. . . . . . . . . . . 12
((b ∩ c) ∪ (b⊥ ∩ c)) = ((c ∩
b) ∪ (c ∩ b⊥ )) |
15 | | ax-a2 31 |
. . . . . . . . . . . 12
((c ∩ b) ∪ (c
∩ b⊥ )) = ((c ∩ b⊥ ) ∪ (c ∩ b)) |
16 | 14, 15 | ax-r2 36 |
. . . . . . . . . . 11
((b ∩ c) ∪ (b⊥ ∩ c)) = ((c ∩
b⊥ ) ∪ (c ∩ b)) |
17 | 16 | lor 70 |
. . . . . . . . . 10
(c⊥ ∪
((b ∩ c) ∪ (b⊥ ∩ c))) = (c⊥ ∪ ((c ∩ b⊥ ) ∪ (c ∩ b))) |
18 | | ax-a3 32 |
. . . . . . . . . . 11
((c⊥ ∪
(c ∩ b⊥ )) ∪ (c ∩ b)) =
(c⊥ ∪ ((c ∩ b⊥ ) ∪ (c ∩ b))) |
19 | 18 | ax-r1 35 |
. . . . . . . . . 10
(c⊥ ∪
((c ∩ b⊥ ) ∪ (c ∩ b))) =
((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
20 | 17, 19 | ax-r2 36 |
. . . . . . . . 9
(c⊥ ∪
((b ∩ c) ∪ (b⊥ ∩ c))) = ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
21 | 11, 20 | lbtr 139 |
. . . . . . . 8
((b ∩ c) ∪ (b⊥ ∩ c)) ≤ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
22 | 10, 21 | bltr 138 |
. . . . . . 7
((b →1 c) ∩ c) ≤
((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
23 | 9, 22 | bltr 138 |
. . . . . 6
((a →1 c) ∩ c) ≤
((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
24 | 7, 23 | letr 137 |
. . . . 5
(a ∩ c) ≤ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
25 | 1, 24 | ler2an 173 |
. . . 4
(a ∩ c) ≤ ((b⊥ ∪ c) ∩ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b))) |
26 | | leao4 165 |
. . . . 5
(a⊥ ∩ c) ≤ (b⊥ ∪ c) |
27 | | leor 159 |
. . . . . . . 8
(a⊥ ∩ c) ≤ (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
28 | | df-i1 44 |
. . . . . . . . 9
(a⊥ →1
c) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
29 | 28 | ax-r1 35 |
. . . . . . . 8
(a⊥
⊥ ∪ (a⊥ ∩ c)) = (a⊥ →1 c) |
30 | 27, 29 | lbtr 139 |
. . . . . . 7
(a⊥ ∩ c) ≤ (a⊥ →1 c) |
31 | | lear 161 |
. . . . . . 7
(a⊥ ∩ c) ≤ c |
32 | 30, 31 | ler2an 173 |
. . . . . 6
(a⊥ ∩ c) ≤ ((a⊥ →1 c) ∩ c) |
33 | 8 | negant 852 |
. . . . . . . 8
(a⊥ →1
c) = (b⊥ →1 c) |
34 | 33 | ran 78 |
. . . . . . 7
((a⊥ →1
c) ∩ c) = ((b⊥ →1 c) ∩ c) |
35 | | u1lemab 610 |
. . . . . . . 8
((b⊥ →1
c) ∩ c) = ((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) |
36 | | leor 159 |
. . . . . . . . 9
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) ≤ (c⊥ ∪ ((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c))) |
37 | | ancom 74 |
. . . . . . . . . . . . 13
(c ∩ b⊥ ) = (b⊥ ∩ c) |
38 | | ancom 74 |
. . . . . . . . . . . . . 14
(c ∩ b) = (b ∩
c) |
39 | | ax-a1 30 |
. . . . . . . . . . . . . . 15
b = b⊥
⊥ |
40 | 39 | ran 78 |
. . . . . . . . . . . . . 14
(b ∩ c) = (b⊥ ⊥ ∩
c) |
41 | 38, 40 | ax-r2 36 |
. . . . . . . . . . . . 13
(c ∩ b) = (b⊥ ⊥ ∩
c) |
42 | 37, 41 | 2or 72 |
. . . . . . . . . . . 12
((c ∩ b⊥ ) ∪ (c ∩ b)) =
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) |
43 | 42 | lor 70 |
. . . . . . . . . . 11
(c⊥ ∪
((c ∩ b⊥ ) ∪ (c ∩ b))) =
(c⊥ ∪ ((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c))) |
44 | 43 | ax-r1 35 |
. . . . . . . . . 10
(c⊥ ∪
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c))) = (c⊥ ∪ ((c ∩ b⊥ ) ∪ (c ∩ b))) |
45 | 44, 19 | ax-r2 36 |
. . . . . . . . 9
(c⊥ ∪
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c))) = ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
46 | 36, 45 | lbtr 139 |
. . . . . . . 8
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) ≤ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
47 | 35, 46 | bltr 138 |
. . . . . . 7
((b⊥ →1
c) ∩ c) ≤ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
48 | 34, 47 | bltr 138 |
. . . . . 6
((a⊥ →1
c) ∩ c) ≤ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
49 | 32, 48 | letr 137 |
. . . . 5
(a⊥ ∩ c) ≤ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
50 | 26, 49 | ler2an 173 |
. . . 4
(a⊥ ∩ c) ≤ ((b⊥ ∪ c) ∩ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b))) |
51 | 25, 50 | lel2or 170 |
. . 3
((a ∩ c) ∪ (a⊥ ∩ c)) ≤ ((b⊥ ∪ c) ∩ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b))) |
52 | | lea 160 |
. . . . 5
((a⊥ ∪ c) ∩ c⊥ ) ≤ (a⊥ ∪ c) |
53 | 8 | negantlem8 856 |
. . . . 5
(a⊥ ∪ c) = (b⊥ ∪ c) |
54 | 52, 53 | lbtr 139 |
. . . 4
((a⊥ ∪ c) ∩ c⊥ ) ≤ (b⊥ ∪ c) |
55 | | leao2 163 |
. . . . 5
((a⊥ ∪ c) ∩ c⊥ ) ≤ (c⊥ ∪ (c ∩ b⊥ )) |
56 | 55 | ler 149 |
. . . 4
((a⊥ ∪ c) ∩ c⊥ ) ≤ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b)) |
57 | 54, 56 | ler2an 173 |
. . 3
((a⊥ ∪ c) ∩ c⊥ ) ≤ ((b⊥ ∪ c) ∩ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b))) |
58 | 51, 57 | lel2or 170 |
. 2
(((a ∩ c) ∪ (a⊥ ∩ c)) ∪ ((a⊥ ∪ c) ∩ c⊥ )) ≤ ((b⊥ ∪ c) ∩ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b))) |
59 | | df-i4 47 |
. 2
(a →4 c) = (((a ∩
c) ∪ (a⊥ ∩ c)) ∪ ((a⊥ ∪ c) ∩ c⊥ )) |
60 | | dfi4b 500 |
. 2
(b →4 c) = ((b⊥ ∪ c) ∩ ((c⊥ ∪ (c ∩ b⊥ )) ∪ (c ∩ b))) |
61 | 58, 59, 60 | le3tr1 140 |
1
(a →4 c) ≤ (b
→4 c) |