Proof of Theorem oa3-u1
| Step | Hyp | Ref
| Expression |
| 1 | | oa3-u1lem 985 |
. . 3
(1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))))) = (c
∪ ((a⊥ →1
c) ∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) |
| 2 | 1 | ax-r1 35 |
. 2
(c ∪ ((a⊥ →1 c) ∩ ((a
→1 c) ∪ ((b →1 c) ∩ (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) = (1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))))) |
| 3 | | le1 146 |
. . . 4
c⊥ ≤
1 |
| 4 | | u1lem9ab 779 |
. . . 4
(a⊥ →1
c)⊥ ≤ (a →1 c) |
| 5 | | u1lem9ab 779 |
. . . 4
(b⊥ →1
c)⊥ ≤ (b →1 c) |
| 6 | | ax-a2 31 |
. . . . . . 7
(c ∪ ((b ∩ c) ∪
(b⊥ ∩ c))) = (((b
∩ c) ∪ (b⊥ ∩ c)) ∪ c) |
| 7 | | lear 161 |
. . . . . . . . 9
(b ∩ c) ≤ c |
| 8 | | lear 161 |
. . . . . . . . 9
(b⊥ ∩ c) ≤ c |
| 9 | 7, 8 | lel2or 170 |
. . . . . . . 8
((b ∩ c) ∪ (b⊥ ∩ c)) ≤ c |
| 10 | 9 | df-le2 131 |
. . . . . . 7
(((b ∩ c) ∪ (b⊥ ∩ c)) ∪ c) =
c |
| 11 | 6, 10 | ax-r2 36 |
. . . . . 6
(c ∪ ((b ∩ c) ∪
(b⊥ ∩ c))) = c |
| 12 | 11 | ax-r1 35 |
. . . . 5
c = (c ∪ ((b
∩ c) ∪ (b⊥ ∩ c))) |
| 13 | | an1 106 |
. . . . . . . . 9
(c ∩ 1) = c |
| 14 | | ancom 74 |
. . . . . . . . . 10
((a⊥ →1
c) ∩ (a →1 c)) = ((a
→1 c) ∩ (a⊥ →1 c)) |
| 15 | | u1lem8 776 |
. . . . . . . . . 10
((a →1 c) ∩ (a⊥ →1 c)) = ((a ∩
c) ∪ (a⊥ ∩ c)) |
| 16 | 14, 15 | ax-r2 36 |
. . . . . . . . 9
((a⊥ →1
c) ∩ (a →1 c)) = ((a ∩
c) ∪ (a⊥ ∩ c)) |
| 17 | 13, 16 | 2or 72 |
. . . . . . . 8
((c ∩ 1) ∪ ((a⊥ →1 c) ∩ (a
→1 c))) = (c ∪ ((a
∩ c) ∪ (a⊥ ∩ c))) |
| 18 | | ax-a2 31 |
. . . . . . . 8
(c ∪ ((a ∩ c) ∪
(a⊥ ∩ c))) = (((a
∩ c) ∪ (a⊥ ∩ c)) ∪ c) |
| 19 | | lear 161 |
. . . . . . . . . 10
(a ∩ c) ≤ c |
| 20 | | lear 161 |
. . . . . . . . . 10
(a⊥ ∩ c) ≤ c |
| 21 | 19, 20 | lel2or 170 |
. . . . . . . . 9
((a ∩ c) ∪ (a⊥ ∩ c)) ≤ c |
| 22 | 21 | df-le2 131 |
. . . . . . . 8
(((a ∩ c) ∪ (a⊥ ∩ c)) ∪ c) =
c |
| 23 | 17, 18, 22 | 3tr 65 |
. . . . . . 7
((c ∩ 1) ∪ ((a⊥ →1 c) ∩ (a
→1 c))) = c |
| 24 | | ancom 74 |
. . . . . . . 8
((b⊥ →1
c) ∩ (b →1 c)) = ((b
→1 c) ∩ (b⊥ →1 c)) |
| 25 | | u1lem8 776 |
. . . . . . . 8
((b →1 c) ∩ (b⊥ →1 c)) = ((b ∩
c) ∪ (b⊥ ∩ c)) |
| 26 | 24, 25 | ax-r2 36 |
. . . . . . 7
((b⊥ →1
c) ∩ (b →1 c)) = ((b ∩
c) ∪ (b⊥ ∩ c)) |
| 27 | 23, 26 | 2or 72 |
. . . . . 6
(((c ∩ 1) ∪ ((a⊥ →1 c) ∩ (a
→1 c))) ∪ ((b⊥ →1 c) ∩ (b
→1 c))) = (c ∪ ((b
∩ c) ∪ (b⊥ ∩ c))) |
| 28 | 27 | ax-r1 35 |
. . . . 5
(c ∪ ((b ∩ c) ∪
(b⊥ ∩ c))) = (((c
∩ 1) ∪ ((a⊥
→1 c) ∩ (a →1 c))) ∪ ((b⊥ →1 c) ∩ (b
→1 c))) |
| 29 | 12, 28 | ax-r2 36 |
. . . 4
c = (((c ∩ 1) ∪ ((a⊥ →1 c) ∩ (a
→1 c))) ∪ ((b⊥ →1 c) ∩ (b
→1 c))) |
| 30 | | oa3-u1.1 |
. . . 4
((c →1 c) ∩ (c
∪ ((a⊥ →1
c) ∩ (((c ∩ (a⊥ →1 c)) ∪ ((c
→1 c) ∩ ((a⊥ →1 c) →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ ((c →1 c) ∩ ((b⊥ →1 c) →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ (((a⊥ →1 c) →1 c) ∩ ((b⊥ →1 c) →1 c)))))))) ≤ c |
| 31 | 3, 4, 5, 29, 30 | oa4to6dual 964 |
. . 3
(1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))))) ≤ c |
| 32 | | leid 148 |
. . 3
c ≤ c |
| 33 | 31, 32 | letr 137 |
. 2
(1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))))) ≤ c |
| 34 | 2, 33 | bltr 138 |
1
(c ∪ ((a⊥ →1 c) ∩ ((a
→1 c) ∪ ((b →1 c) ∩ (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) ≤ c |