Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oal42 | GIF version |
Description: Derivation of Godowski/Greechie Eq. II from Eq. IV. (Contributed by NM, 25-Nov-1998.) |
Ref | Expression |
---|---|
oal42.1 | (b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) |
Ref | Expression |
---|---|
oal42 | (b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ a⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oal42.1 | . . 3 (b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) | |
2 | ancom 74 | . . . . 5 (b⊥ ∩ (a →2 b)) = ((a →2 b) ∩ b⊥ ) | |
3 | u2lemanb 616 | . . . . 5 ((a →2 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) | |
4 | 2, 3 | ax-r2 36 | . . . 4 (b⊥ ∩ (a →2 b)) = (a⊥ ∩ b⊥ ) |
5 | ancom 74 | . . . . 5 (c⊥ ∩ (a →2 c)) = ((a →2 c) ∩ c⊥ ) | |
6 | u2lemanb 616 | . . . . 5 ((a →2 c) ∩ c⊥ ) = (a⊥ ∩ c⊥ ) | |
7 | 5, 6 | ax-r2 36 | . . . 4 (c⊥ ∩ (a →2 c)) = (a⊥ ∩ c⊥ ) |
8 | 4, 7 | 2or 72 | . . 3 ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ )) |
9 | 1, 8 | lbtr 139 | . 2 (b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ )) |
10 | lea 160 | . . 3 (a⊥ ∩ b⊥ ) ≤ a⊥ | |
11 | lea 160 | . . 3 (a⊥ ∩ c⊥ ) ≤ a⊥ | |
12 | 10, 11 | lel2or 170 | . 2 ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ )) ≤ a⊥ |
13 | 9, 12 | letr 137 | 1 (b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ a⊥ |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: oa43v 1028 oa63v 1032 |
Copyright terms: Public domain | W3C validator |