Proof of Theorem u2lemanb
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →2 b) ∩ b⊥ ) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) |
| 3 | | comid 187 |
. . . . 5
b C b |
| 4 | 3 | comcom3 454 |
. . . 4
b⊥ C
b |
| 5 | | comanr2 465 |
. . . 4
b⊥ C
(a⊥ ∩ b⊥ ) |
| 6 | 4, 5 | fh1r 473 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = ((b ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) |
| 7 | | ax-a2 31 |
. . . 4
((b ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) = (((a⊥ ∩ b⊥ ) ∩ b⊥ ) ∪ (b ∩ b⊥ )) |
| 8 | | anass 76 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ (b⊥ ∩ b⊥ )) |
| 9 | | anidm 111 |
. . . . . . . 8
(b⊥ ∩ b⊥ ) = b⊥ |
| 10 | 9 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 11 | 8, 10 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 12 | | dff 101 |
. . . . . . 7
0 = (b ∩ b⊥ ) |
| 13 | 12 | ax-r1 35 |
. . . . . 6
(b ∩ b⊥ ) = 0 |
| 14 | 11, 13 | 2or 72 |
. . . . 5
(((a⊥ ∩
b⊥ ) ∩ b⊥ ) ∪ (b ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
| 15 | | or0 102 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
| 16 | 14, 15 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b⊥ ) ∩ b⊥ ) ∪ (b ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 17 | 7, 16 | ax-r2 36 |
. . 3
((b ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 18 | 6, 17 | ax-r2 36 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 19 | 2, 18 | ax-r2 36 |
1
((a →2 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |