Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oaur | GIF version |
Description: Transformation lemma for studying the orthoarguesian law. (Contributed by NM, 28-Dec-1998.) |
Ref | Expression |
---|---|
oaur.1 | b ≤ (a →1 c) |
Ref | Expression |
---|---|
oaur | (a ∩ ((a →1 c) ∪ b)) ≤ c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leid 148 | . . . . 5 (a →1 c) ≤ (a →1 c) | |
2 | oaur.1 | . . . . 5 b ≤ (a →1 c) | |
3 | 1, 2 | lel2or 170 | . . . 4 ((a →1 c) ∪ b) ≤ (a →1 c) |
4 | 3 | lelan 167 | . . 3 (a ∩ ((a →1 c) ∪ b)) ≤ (a ∩ (a →1 c)) |
5 | ancom 74 | . . . 4 (a ∩ (a →1 c)) = ((a →1 c) ∩ a) | |
6 | u1lemaa 600 | . . . 4 ((a →1 c) ∩ a) = (a ∩ c) | |
7 | 5, 6 | ax-r2 36 | . . 3 (a ∩ (a →1 c)) = (a ∩ c) |
8 | 4, 7 | lbtr 139 | . 2 (a ∩ ((a →1 c) ∪ b)) ≤ (a ∩ c) |
9 | lear 161 | . 2 (a ∩ c) ≤ c | |
10 | 8, 9 | letr 137 | 1 (a ∩ ((a →1 c) ∪ b)) ≤ c |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: oa4gto4u 976 |
Copyright terms: Public domain | W3C validator |