Proof of Theorem u1lemaa
| Step | Hyp | Ref
| Expression |
| 1 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 2 | 1 | ran 78 |
. 2
((a →1 b) ∩ a) =
((a⊥ ∪ (a ∩ b))
∩ a) |
| 3 | | comid 187 |
. . . . 5
a C a |
| 4 | 3 | comcom2 183 |
. . . 4
a C a⊥ |
| 5 | | comanr1 464 |
. . . 4
a C (a ∩ b) |
| 6 | 4, 5 | fh1r 473 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ a) =
((a⊥ ∩ a) ∪ ((a
∩ b) ∩ a)) |
| 7 | | ax-a2 31 |
. . . . 5
((a⊥ ∩ a) ∪ ((a
∩ b) ∩ a)) = (((a ∩
b) ∩ a) ∪ (a⊥ ∩ a)) |
| 8 | | an32 83 |
. . . . . . 7
((a ∩ b) ∩ a) =
((a ∩ a) ∩ b) |
| 9 | | anidm 111 |
. . . . . . . 8
(a ∩ a) = a |
| 10 | 9 | ran 78 |
. . . . . . 7
((a ∩ a) ∩ b) =
(a ∩ b) |
| 11 | 8, 10 | ax-r2 36 |
. . . . . 6
((a ∩ b) ∩ a) =
(a ∩ b) |
| 12 | | ancom 74 |
. . . . . . 7
(a⊥ ∩ a) = (a ∩
a⊥ ) |
| 13 | | dff 101 |
. . . . . . . 8
0 = (a ∩ a⊥ ) |
| 14 | 13 | ax-r1 35 |
. . . . . . 7
(a ∩ a⊥ ) = 0 |
| 15 | 12, 14 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ a) = 0 |
| 16 | 11, 15 | 2or 72 |
. . . . 5
(((a ∩ b) ∩ a)
∪ (a⊥ ∩ a)) = ((a ∩
b) ∪ 0) |
| 17 | 7, 16 | ax-r2 36 |
. . . 4
((a⊥ ∩ a) ∪ ((a
∩ b) ∩ a)) = ((a ∩
b) ∪ 0) |
| 18 | | or0 102 |
. . . 4
((a ∩ b) ∪ 0) = (a
∩ b) |
| 19 | 17, 18 | ax-r2 36 |
. . 3
((a⊥ ∩ a) ∪ ((a
∩ b) ∩ a)) = (a ∩
b) |
| 20 | 6, 19 | ax-r2 36 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ a) =
(a ∩ b) |
| 21 | 2, 20 | ax-r2 36 |
1
((a →1 b) ∩ a) =
(a ∩ b) |