Proof of Theorem ud3lem1c
Step | Hyp | Ref
| Expression |
1 | | ud3lem0c 279 |
. . 3
(a →3 b)⊥ = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
2 | | df-i3 46 |
. . 3
(b →3 a) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) |
3 | 1, 2 | 2or 72 |
. 2
((a →3 b)⊥ ∪ (b →3 a)) = ((((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) |
4 | | coman2 186 |
. . . . . . . . 9
(b⊥ ∩ a) C a |
5 | | coman1 185 |
. . . . . . . . 9
(b⊥ ∩ a) C b⊥ |
6 | 4, 5 | com2or 483 |
. . . . . . . 8
(b⊥ ∩ a) C (a
∪ b⊥
) |
7 | 5 | comcom7 460 |
. . . . . . . . 9
(b⊥ ∩ a) C b |
8 | 4, 7 | com2or 483 |
. . . . . . . 8
(b⊥ ∩ a) C (a
∪ b) |
9 | 6, 8 | com2an 484 |
. . . . . . 7
(b⊥ ∩ a) C ((a
∪ b⊥ ) ∩ (a ∪ b)) |
10 | 9 | comcom 453 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(b⊥ ∩ a) |
11 | | coman2 186 |
. . . . . . . . . 10
(b⊥ ∩ a⊥ ) C a⊥ |
12 | 11 | comcom7 460 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) C a |
13 | | coman1 185 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) C b⊥ |
14 | 12, 13 | com2or 483 |
. . . . . . . 8
(b⊥ ∩ a⊥ ) C (a ∪ b⊥ ) |
15 | 13 | comcom7 460 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) C b |
16 | 12, 15 | com2or 483 |
. . . . . . . 8
(b⊥ ∩ a⊥ ) C (a ∪ b) |
17 | 14, 16 | com2an 484 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C ((a ∪ b⊥ ) ∩ (a ∪ b)) |
18 | 17 | comcom 453 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(b⊥ ∩ a⊥ ) |
19 | 10, 18 | com2or 483 |
. . . . 5
((a ∪ b⊥ ) ∩ (a ∪ b)) C
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
20 | | comorr2 463 |
. . . . . . . . 9
b⊥ C
(a ∪ b⊥ ) |
21 | 20 | comcom6 459 |
. . . . . . . 8
b C (a ∪ b⊥ ) |
22 | | comorr2 463 |
. . . . . . . 8
b C (a ∪ b) |
23 | 21, 22 | com2an 484 |
. . . . . . 7
b C ((a ∪ b⊥ ) ∩ (a ∪ b)) |
24 | 23 | comcom 453 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
b |
25 | | comor2 462 |
. . . . . . . . 9
(b⊥ ∪ a) C a |
26 | | comor1 461 |
. . . . . . . . 9
(b⊥ ∪ a) C b⊥ |
27 | 25, 26 | com2or 483 |
. . . . . . . 8
(b⊥ ∪ a) C (a
∪ b⊥
) |
28 | 26 | comcom7 460 |
. . . . . . . . 9
(b⊥ ∪ a) C b |
29 | 25, 28 | com2or 483 |
. . . . . . . 8
(b⊥ ∪ a) C (a
∪ b) |
30 | 27, 29 | com2an 484 |
. . . . . . 7
(b⊥ ∪ a) C ((a
∪ b⊥ ) ∩ (a ∪ b)) |
31 | 30 | comcom 453 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(b⊥ ∪ a) |
32 | 24, 31 | com2an 484 |
. . . . 5
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(b ∩ (b⊥ ∪ a)) |
33 | 19, 32 | com2or 483 |
. . . 4
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) |
34 | | comorr 184 |
. . . . . . . 8
a C (a ∪ b⊥ ) |
35 | 34 | comcom3 454 |
. . . . . . 7
a⊥ C
(a ∪ b⊥ ) |
36 | | comorr 184 |
. . . . . . . 8
a C (a ∪ b) |
37 | 36 | comcom3 454 |
. . . . . . 7
a⊥ C
(a ∪ b) |
38 | 35, 37 | com2an 484 |
. . . . . 6
a⊥ C
((a ∪ b⊥ ) ∩ (a ∪ b)) |
39 | 38 | comcom 453 |
. . . . 5
((a ∪ b⊥ ) ∩ (a ∪ b)) C
a⊥ |
40 | | coman1 185 |
. . . . . . . 8
(a ∩ b⊥ ) C a |
41 | | coman2 186 |
. . . . . . . 8
(a ∩ b⊥ ) C b⊥ |
42 | 40, 41 | com2or 483 |
. . . . . . 7
(a ∩ b⊥ ) C (a ∪ b⊥ ) |
43 | 41 | comcom7 460 |
. . . . . . . 8
(a ∩ b⊥ ) C b |
44 | 40, 43 | com2or 483 |
. . . . . . 7
(a ∩ b⊥ ) C (a ∪ b) |
45 | 42, 44 | com2an 484 |
. . . . . 6
(a ∩ b⊥ ) C ((a ∪ b⊥ ) ∩ (a ∪ b)) |
46 | 45 | comcom 453 |
. . . . 5
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(a ∩ b⊥ ) |
47 | 39, 46 | com2or 483 |
. . . 4
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(a⊥ ∪ (a ∩ b⊥ )) |
48 | 33, 47 | fh4r 476 |
. . 3
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = ((((a
∪ b⊥ ) ∩ (a ∪ b))
∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) ∩ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))))) |
49 | | comor2 462 |
. . . . . . . . . 10
(a ∪ b⊥ ) C b⊥ |
50 | | comor1 461 |
. . . . . . . . . 10
(a ∪ b⊥ ) C a |
51 | 49, 50 | com2an 484 |
. . . . . . . . 9
(a ∪ b⊥ ) C (b⊥ ∩ a) |
52 | 50 | comcom2 183 |
. . . . . . . . . 10
(a ∪ b⊥ ) C a⊥ |
53 | 49, 52 | com2an 484 |
. . . . . . . . 9
(a ∪ b⊥ ) C (b⊥ ∩ a⊥ ) |
54 | 51, 53 | com2or 483 |
. . . . . . . 8
(a ∪ b⊥ ) C ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
55 | 49 | comcom7 460 |
. . . . . . . . 9
(a ∪ b⊥ ) C b |
56 | 49, 50 | com2or 483 |
. . . . . . . . 9
(a ∪ b⊥ ) C (b⊥ ∪ a) |
57 | 55, 56 | com2an 484 |
. . . . . . . 8
(a ∪ b⊥ ) C (b ∩ (b⊥ ∪ a)) |
58 | 54, 57 | com2or 483 |
. . . . . . 7
(a ∪ b⊥ ) C (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) |
59 | 50, 55 | com2or 483 |
. . . . . . 7
(a ∪ b⊥ ) C (a ∪ b) |
60 | 58, 59 | fh4r 476 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (a ∪ b))
∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (((a
∪ b⊥ ) ∪
(((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) ∩ ((a
∪ b) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))))) |
61 | | ax-a2 31 |
. . . . . . . . 9
((a ∪ b⊥ ) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = ((((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) ∪ (a
∪ b⊥
)) |
62 | | lea 160 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) ≤ b⊥ |
63 | | lea 160 |
. . . . . . . . . . . . 13
(b⊥ ∩ a⊥ ) ≤ b⊥ |
64 | 62, 63 | lel2or 170 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ≤ b⊥ |
65 | | leor 159 |
. . . . . . . . . . . 12
b⊥ ≤ (a ∪ b⊥ ) |
66 | 64, 65 | letr 137 |
. . . . . . . . . . 11
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ≤ (a ∪ b⊥ ) |
67 | | lear 161 |
. . . . . . . . . . . 12
(b ∩ (b⊥ ∪ a)) ≤ (b⊥ ∪ a) |
68 | | ax-a2 31 |
. . . . . . . . . . . 12
(b⊥ ∪ a) = (a ∪
b⊥ ) |
69 | 67, 68 | lbtr 139 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ a)) ≤ (a
∪ b⊥
) |
70 | 66, 69 | lel2or 170 |
. . . . . . . . . 10
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) ≤ (a
∪ b⊥
) |
71 | 70 | df-le2 131 |
. . . . . . . . 9
((((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) ∪ (a
∪ b⊥ )) = (a ∪ b⊥ ) |
72 | 61, 71 | ax-r2 36 |
. . . . . . . 8
((a ∪ b⊥ ) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (a ∪
b⊥ ) |
73 | | or12 80 |
. . . . . . . . 9
((a ∪ b) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ ((a ∪ b) ∪
(b ∩ (b⊥ ∪ a)))) |
74 | | ax-a3 32 |
. . . . . . . . . . 11
((((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (a ∪ b))
∪ (b ∩ (b⊥ ∪ a))) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ ((a ∪ b) ∪
(b ∩ (b⊥ ∪ a)))) |
75 | 74 | ax-r1 35 |
. . . . . . . . . 10
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ ((a ∪ b) ∪
(b ∩ (b⊥ ∪ a)))) = ((((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (a ∪ b))
∪ (b ∩ (b⊥ ∪ a))) |
76 | | ax-a3 32 |
. . . . . . . . . . . . 13
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (a ∪ b)) =
((b⊥ ∩ a) ∪ ((b⊥ ∩ a⊥ ) ∪ (a ∪ b))) |
77 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
78 | | oran 87 |
. . . . . . . . . . . . . . . . 17
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
79 | 77, 78 | 2or 72 |
. . . . . . . . . . . . . . . 16
((b⊥ ∩ a⊥ ) ∪ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
80 | | df-t 41 |
. . . . . . . . . . . . . . . . 17
1 = ((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
81 | 80 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥ ) =
1 |
82 | 79, 81 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((b⊥ ∩ a⊥ ) ∪ (a ∪ b)) =
1 |
83 | 82 | lor 70 |
. . . . . . . . . . . . . 14
((b⊥ ∩ a) ∪ ((b⊥ ∩ a⊥ ) ∪ (a ∪ b))) =
((b⊥ ∩ a) ∪ 1) |
84 | | or1 104 |
. . . . . . . . . . . . . 14
((b⊥ ∩ a) ∪ 1) = 1 |
85 | 83, 84 | ax-r2 36 |
. . . . . . . . . . . . 13
((b⊥ ∩ a) ∪ ((b⊥ ∩ a⊥ ) ∪ (a ∪ b))) =
1 |
86 | 76, 85 | ax-r2 36 |
. . . . . . . . . . . 12
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (a ∪ b)) =
1 |
87 | 86 | ax-r5 38 |
. . . . . . . . . . 11
((((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (a ∪ b))
∪ (b ∩ (b⊥ ∪ a))) = (1 ∪ (b ∩ (b⊥ ∪ a))) |
88 | | or1r 105 |
. . . . . . . . . . 11
(1 ∪ (b ∩ (b⊥ ∪ a))) = 1 |
89 | 87, 88 | ax-r2 36 |
. . . . . . . . . 10
((((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (a ∪ b))
∪ (b ∩ (b⊥ ∪ a))) = 1 |
90 | 75, 89 | ax-r2 36 |
. . . . . . . . 9
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ ((a ∪ b) ∪
(b ∩ (b⊥ ∪ a)))) = 1 |
91 | 73, 90 | ax-r2 36 |
. . . . . . . 8
((a ∪ b) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = 1 |
92 | 72, 91 | 2an 79 |
. . . . . . 7
(((a ∪ b⊥ ) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) ∩ ((a
∪ b) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))))) = ((a
∪ b⊥ ) ∩
1) |
93 | | an1 106 |
. . . . . . 7
((a ∪ b⊥ ) ∩ 1) = (a ∪ b⊥ ) |
94 | 92, 93 | ax-r2 36 |
. . . . . 6
(((a ∪ b⊥ ) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) ∩ ((a
∪ b) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))))) = (a
∪ b⊥
) |
95 | 60, 94 | ax-r2 36 |
. . . . 5
(((a ∪ b⊥ ) ∩ (a ∪ b))
∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (a ∪
b⊥ ) |
96 | | or12 80 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ )) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) |
97 | | ax-a2 31 |
. . . . . . . . . 10
(a⊥ ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ a⊥ ) |
98 | | ancom 74 |
. . . . . . . . . 10
(b ∩ (b⊥ ∪ a)) = ((b⊥ ∪ a) ∩ b) |
99 | 97, 98 | 2or 72 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b⊥ )) ∪ (b ∩ (b⊥ ∪ a))) = (((a
∩ b⊥ ) ∪ a⊥ ) ∪ ((b⊥ ∪ a) ∩ b)) |
100 | | ax-a3 32 |
. . . . . . . . . 10
(((a ∩ b⊥ ) ∪ a⊥ ) ∪ ((b⊥ ∪ a) ∩ b)) =
((a ∩ b⊥ ) ∪ (a⊥ ∪ ((b⊥ ∪ a) ∩ b))) |
101 | 25 | comcom2 183 |
. . . . . . . . . . . . . 14
(b⊥ ∪ a) C a⊥ |
102 | 101, 28 | fh4 472 |
. . . . . . . . . . . . 13
(a⊥ ∪
((b⊥ ∪ a) ∩ b)) =
((a⊥ ∪ (b⊥ ∪ a)) ∩ (a⊥ ∪ b)) |
103 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
(a⊥ ∪ (b⊥ ∪ a)) = ((b⊥ ∪ a) ∪ a⊥ ) |
104 | | ax-a3 32 |
. . . . . . . . . . . . . . . . 17
((b⊥ ∪ a) ∪ a⊥ ) = (b⊥ ∪ (a ∪ a⊥ )) |
105 | | df-t 41 |
. . . . . . . . . . . . . . . . . . . 20
1 = (a ∪ a⊥ ) |
106 | 105 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . 19
(a ∪ a⊥ ) = 1 |
107 | 106 | lor 70 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∪ (a ∪ a⊥ )) = (b⊥ ∪ 1) |
108 | | or1 104 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∪ 1) =
1 |
109 | 107, 108 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∪ (a ∪ a⊥ )) = 1 |
110 | 104, 109 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b⊥ ∪ a) ∪ a⊥ ) = 1 |
111 | 103, 110 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(a⊥ ∪ (b⊥ ∪ a)) = 1 |
112 | 111 | ran 78 |
. . . . . . . . . . . . . 14
((a⊥ ∪
(b⊥ ∪ a)) ∩ (a⊥ ∪ b)) = (1 ∩ (a⊥ ∪ b)) |
113 | | an1r 107 |
. . . . . . . . . . . . . 14
(1 ∩ (a⊥ ∪
b)) = (a⊥ ∪ b) |
114 | 112, 113 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∪
(b⊥ ∪ a)) ∩ (a⊥ ∪ b)) = (a⊥ ∪ b) |
115 | 102, 114 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∪
((b⊥ ∪ a) ∩ b)) =
(a⊥ ∪ b) |
116 | 115 | lor 70 |
. . . . . . . . . . 11
((a ∩ b⊥ ) ∪ (a⊥ ∪ ((b⊥ ∪ a) ∩ b))) =
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) |
117 | | ax-a2 31 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∪ (a
∩ b⊥
)) |
118 | | anor1 88 |
. . . . . . . . . . . . . 14
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
119 | 118 | lor 70 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∪ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∪ (a⊥ ∪ b)⊥ ) |
120 | | df-t 41 |
. . . . . . . . . . . . . 14
1 = ((a⊥ ∪
b) ∪ (a⊥ ∪ b)⊥ ) |
121 | 120 | ax-r1 35 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∪ (a⊥ ∪ b)⊥ ) = 1 |
122 | 119, 121 | ax-r2 36 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∪ (a
∩ b⊥ )) =
1 |
123 | 117, 122 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = 1 |
124 | 116, 123 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ b⊥ ) ∪ (a⊥ ∪ ((b⊥ ∪ a) ∩ b))) =
1 |
125 | 100, 124 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b⊥ ) ∪ a⊥ ) ∪ ((b⊥ ∪ a) ∩ b)) =
1 |
126 | 99, 125 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b⊥ )) ∪ (b ∩ (b⊥ ∪ a))) = 1 |
127 | 126 | lor 70 |
. . . . . . 7
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ 1) |
128 | | or1 104 |
. . . . . . 7
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ 1) = 1 |
129 | 127, 128 | ax-r2 36 |
. . . . . 6
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = 1 |
130 | 96, 129 | ax-r2 36 |
. . . . 5
((a⊥ ∪
(a ∩ b⊥ )) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = 1 |
131 | 95, 130 | 2an 79 |
. . . 4
((((a ∪ b⊥ ) ∩ (a ∪ b))
∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) ∩ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))))) = ((a
∪ b⊥ ) ∩
1) |
132 | 131, 93 | ax-r2 36 |
. . 3
((((a ∪ b⊥ ) ∩ (a ∪ b))
∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) ∩ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))))) = (a
∪ b⊥
) |
133 | 48, 132 | ax-r2 36 |
. 2
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (a ∪
b⊥ ) |
134 | 3, 133 | ax-r2 36 |
1
((a →3 b)⊥ ∪ (b →3 a)) = (a ∪
b⊥ ) |