Proof of Theorem ud5lem1
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. 2
((a →5 b) →5 (b →5 a)) = ((((a
→5 b) ∩ (b →5 a)) ∪ ((a
→5 b)⊥
∩ (b →5 a))) ∪ ((a
→5 b)⊥
∩ (b →5 a)⊥ )) |
| 2 | | ud5lem1a 586 |
. . . . 5
((a →5 b) ∩ (b
→5 a)) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 3 | | ud5lem1b 587 |
. . . . 5
((a →5 b)⊥ ∩ (b →5 a)) = (a ∩
b⊥ ) |
| 4 | 2, 3 | 2or 72 |
. . . 4
(((a →5 b) ∩ (b
→5 a)) ∪ ((a →5 b)⊥ ∩ (b →5 a))) = (((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 5 | | ud5lem1c 588 |
. . . 4
((a →5 b)⊥ ∩ (b →5 a)⊥ ) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 6 | 4, 5 | 2or 72 |
. . 3
((((a →5 b) ∩ (b
→5 a)) ∪ ((a →5 b)⊥ ∩ (b →5 a))) ∪ ((a
→5 b)⊥
∩ (b →5 a)⊥ )) = ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) |
| 7 | | coman1 185 |
. . . . . . . . . 10
(a ∩ b) C a |
| 8 | | coman2 186 |
. . . . . . . . . 10
(a ∩ b) C b |
| 9 | 7, 8 | com2or 483 |
. . . . . . . . 9
(a ∩ b) C (a
∪ b) |
| 10 | 8 | comcom2 183 |
. . . . . . . . . 10
(a ∩ b) C b⊥ |
| 11 | 7, 10 | com2or 483 |
. . . . . . . . 9
(a ∩ b) C (a
∪ b⊥
) |
| 12 | 9, 11 | com2an 484 |
. . . . . . . 8
(a ∩ b) C ((a
∪ b) ∩ (a ∪ b⊥ )) |
| 13 | 12 | comcom 453 |
. . . . . . 7
((a ∪ b) ∩ (a
∪ b⊥ )) C
(a ∩ b) |
| 14 | | coman1 185 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) C a⊥ |
| 15 | 14 | comcom7 460 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C a |
| 16 | | coman2 186 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) C b⊥ |
| 17 | 16 | comcom7 460 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C b |
| 18 | 15, 17 | com2or 483 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C (a ∪ b) |
| 19 | 15, 16 | com2or 483 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C (a ∪ b⊥ ) |
| 20 | 18, 19 | com2an 484 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C ((a ∪ b) ∩
(a ∪ b⊥ )) |
| 21 | 20 | comcom 453 |
. . . . . . 7
((a ∪ b) ∩ (a
∪ b⊥ )) C
(a⊥ ∩ b⊥ ) |
| 22 | 13, 21 | com2or 483 |
. . . . . 6
((a ∪ b) ∩ (a
∪ b⊥ )) C
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 23 | | coman1 185 |
. . . . . . . . 9
(a ∩ b⊥ ) C a |
| 24 | | coman2 186 |
. . . . . . . . . 10
(a ∩ b⊥ ) C b⊥ |
| 25 | 24 | comcom7 460 |
. . . . . . . . 9
(a ∩ b⊥ ) C b |
| 26 | 23, 25 | com2or 483 |
. . . . . . . 8
(a ∩ b⊥ ) C (a ∪ b) |
| 27 | 23, 24 | com2or 483 |
. . . . . . . 8
(a ∩ b⊥ ) C (a ∪ b⊥ ) |
| 28 | 26, 27 | com2an 484 |
. . . . . . 7
(a ∩ b⊥ ) C ((a ∪ b) ∩
(a ∪ b⊥ )) |
| 29 | 28 | comcom 453 |
. . . . . 6
((a ∪ b) ∩ (a
∪ b⊥ )) C
(a ∩ b⊥ ) |
| 30 | 22, 29 | com2or 483 |
. . . . 5
((a ∪ b) ∩ (a
∪ b⊥ )) C
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 31 | | comor1 461 |
. . . . . . . . . 10
(a⊥ ∪ b) C a⊥ |
| 32 | 31 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∪ b) C a |
| 33 | | comor2 462 |
. . . . . . . . 9
(a⊥ ∪ b) C b |
| 34 | 32, 33 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b) C (a
∪ b) |
| 35 | 33 | comcom2 183 |
. . . . . . . . 9
(a⊥ ∪ b) C b⊥ |
| 36 | 32, 35 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b) C (a
∪ b⊥
) |
| 37 | 34, 36 | com2an 484 |
. . . . . . 7
(a⊥ ∪ b) C ((a
∪ b) ∩ (a ∪ b⊥ )) |
| 38 | 37 | comcom 453 |
. . . . . 6
((a ∪ b) ∩ (a
∪ b⊥ )) C
(a⊥ ∪ b) |
| 39 | | comor1 461 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C a⊥ |
| 40 | 39 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C a |
| 41 | | comor2 462 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C b⊥ |
| 42 | 41 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C b |
| 43 | 40, 42 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C (a ∪ b) |
| 44 | 40, 41 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C (a ∪ b⊥ ) |
| 45 | 43, 44 | com2an 484 |
. . . . . . 7
(a⊥ ∪ b⊥ ) C ((a ∪ b) ∩
(a ∪ b⊥ )) |
| 46 | 45 | comcom 453 |
. . . . . 6
((a ∪ b) ∩ (a
∪ b⊥ )) C
(a⊥ ∪ b⊥ ) |
| 47 | 38, 46 | com2an 484 |
. . . . 5
((a ∪ b) ∩ (a
∪ b⊥ )) C
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) |
| 48 | 30, 47 | fh4 472 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) = (((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) |
| 49 | | comor1 461 |
. . . . . . . . . . 11
(a ∪ b) C a |
| 50 | | comor2 462 |
. . . . . . . . . . 11
(a ∪ b) C b |
| 51 | 49, 50 | com2an 484 |
. . . . . . . . . 10
(a ∪ b) C (a
∩ b) |
| 52 | 49 | comcom2 183 |
. . . . . . . . . . 11
(a ∪ b) C a⊥ |
| 53 | 50 | comcom2 183 |
. . . . . . . . . . 11
(a ∪ b) C b⊥ |
| 54 | 52, 53 | com2an 484 |
. . . . . . . . . 10
(a ∪ b) C (a⊥ ∩ b⊥ ) |
| 55 | 51, 54 | com2or 483 |
. . . . . . . . 9
(a ∪ b) C ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 56 | 49, 53 | com2an 484 |
. . . . . . . . 9
(a ∪ b) C (a
∩ b⊥
) |
| 57 | 55, 56 | com2or 483 |
. . . . . . . 8
(a ∪ b) C (((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 58 | 49, 53 | com2or 483 |
. . . . . . . 8
(a ∪ b) C (a
∪ b⊥
) |
| 59 | 57, 58 | fh4 472 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))) = (((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b))
∩ ((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b⊥ ))) |
| 60 | | or32 82 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b)) =
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b))
∪ (a ∩ b⊥ )) |
| 61 | | ax-a3 32 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b)) =
((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∪ b))) |
| 62 | | oran 87 |
. . . . . . . . . . . . . . . . 17
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 63 | 62 | lor 70 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
| 64 | | df-t 41 |
. . . . . . . . . . . . . . . . 17
1 = ((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
| 65 | 64 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥ ) =
1 |
| 66 | 63, 65 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) =
1 |
| 67 | 66 | lor 70 |
. . . . . . . . . . . . . 14
((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∪ b))) =
((a ∩ b) ∪ 1) |
| 68 | | or1 104 |
. . . . . . . . . . . . . 14
((a ∩ b) ∪ 1) = 1 |
| 69 | 67, 68 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∪ b))) =
1 |
| 70 | 61, 69 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b)) =
1 |
| 71 | 70 | ax-r5 38 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b))
∪ (a ∩ b⊥ )) = (1 ∪ (a ∩ b⊥ )) |
| 72 | | or1r 105 |
. . . . . . . . . . 11
(1 ∪ (a ∩ b⊥ )) = 1 |
| 73 | 71, 72 | ax-r2 36 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b))
∪ (a ∩ b⊥ )) = 1 |
| 74 | 60, 73 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b)) =
1 |
| 75 | | lea 160 |
. . . . . . . . . . . . 13
(a ∩ b) ≤ a |
| 76 | | leo 158 |
. . . . . . . . . . . . 13
a ≤ (a ∪ b⊥ ) |
| 77 | 75, 76 | letr 137 |
. . . . . . . . . . . 12
(a ∩ b) ≤ (a ∪
b⊥ ) |
| 78 | | lear 161 |
. . . . . . . . . . . . 13
(a⊥ ∩ b⊥ ) ≤ b⊥ |
| 79 | | leor 159 |
. . . . . . . . . . . . 13
b⊥ ≤ (a ∪ b⊥ ) |
| 80 | 78, 79 | letr 137 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ ) ≤ (a ∪ b⊥ ) |
| 81 | 77, 80 | lel2or 170 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a ∪ b⊥ ) |
| 82 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) ≤ a |
| 83 | 82, 76 | letr 137 |
. . . . . . . . . . 11
(a ∩ b⊥ ) ≤ (a ∪ b⊥ ) |
| 84 | 81, 83 | lel2or 170 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ≤ (a ∪ b⊥ ) |
| 85 | 84 | df-le2 131 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b⊥ )) = (a ∪ b⊥ ) |
| 86 | 74, 85 | 2an 79 |
. . . . . . . 8
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b))
∩ ((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b⊥ ))) = (1 ∩ (a ∪ b⊥ )) |
| 87 | | an1r 107 |
. . . . . . . 8
(1 ∩ (a ∪ b⊥ )) = (a ∪ b⊥ ) |
| 88 | 86, 87 | ax-r2 36 |
. . . . . . 7
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b))
∩ ((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∪ b⊥ ))) = (a ∪ b⊥ ) |
| 89 | 59, 88 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))) = (a ∪ b⊥ ) |
| 90 | 32, 33 | com2an 484 |
. . . . . . . . . 10
(a⊥ ∪ b) C (a
∩ b) |
| 91 | 31, 35 | com2an 484 |
. . . . . . . . . 10
(a⊥ ∪ b) C (a⊥ ∩ b⊥ ) |
| 92 | 90, 91 | com2or 483 |
. . . . . . . . 9
(a⊥ ∪ b) C ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 93 | 32, 35 | com2an 484 |
. . . . . . . . 9
(a⊥ ∪ b) C (a
∩ b⊥
) |
| 94 | 92, 93 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b) C (((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 95 | 31, 35 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b) C (a⊥ ∪ b⊥ ) |
| 96 | 94, 95 | fh4 472 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) = (((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b)) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ ))) |
| 97 | | ax-a3 32 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b)) = (((a ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∪ b))) |
| 98 | | anor1 88 |
. . . . . . . . . . . . . . . 16
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 99 | 98 | ax-r1 35 |
. . . . . . . . . . . . . . 15
(a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
| 100 | 99 | con3 68 |
. . . . . . . . . . . . . 14
(a⊥ ∪ b) = (a ∩
b⊥
)⊥ |
| 101 | 100 | lor 70 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = ((a ∩
b⊥ ) ∪ (a ∩ b⊥ )⊥
) |
| 102 | | df-t 41 |
. . . . . . . . . . . . . 14
1 = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ )⊥
) |
| 103 | 102 | ax-r1 35 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∪ (a ∩ b⊥ )⊥ ) =
1 |
| 104 | 101, 103 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = 1 |
| 105 | 104 | lor 70 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∪ b))) = (((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 1) |
| 106 | | or1 104 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 1) = 1 |
| 107 | 105, 106 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∪ b))) = 1 |
| 108 | 97, 107 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b)) = 1 |
| 109 | | or32 82 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∪ (a ∩ b⊥ )) |
| 110 | | or32 82 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = (((a ∩ b) ∪
(a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) |
| 111 | | df-a 40 |
. . . . . . . . . . . . . . . . . . 19
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 112 | 111 | ax-r1 35 |
. . . . . . . . . . . . . . . . . 18
(a⊥ ∪ b⊥ )⊥ = (a ∩ b) |
| 113 | 112 | con3 68 |
. . . . . . . . . . . . . . . . 17
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
| 114 | 113 | lor 70 |
. . . . . . . . . . . . . . . 16
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = ((a ∩ b) ∪
(a ∩ b)⊥ ) |
| 115 | | df-t 41 |
. . . . . . . . . . . . . . . . 17
1 = ((a ∩ b) ∪ (a
∩ b)⊥
) |
| 116 | 115 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a ∩ b) ∪ (a
∩ b)⊥ ) =
1 |
| 117 | 114, 116 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 118 | 117 | ax-r5 38 |
. . . . . . . . . . . . . 14
(((a ∩ b) ∪ (a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = (1 ∪ (a⊥ ∩ b⊥ )) |
| 119 | | or1r 105 |
. . . . . . . . . . . . . 14
(1 ∪ (a⊥ ∩
b⊥ )) = 1 |
| 120 | 118, 119 | ax-r2 36 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = 1 |
| 121 | 110, 120 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 122 | 121 | ax-r5 38 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∪ (a ∩ b⊥ )) = (1 ∪ (a ∩ b⊥ )) |
| 123 | 122, 72 | ax-r2 36 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∪ (a ∩ b⊥ )) = 1 |
| 124 | 109, 123 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 125 | 108, 124 | 2an 79 |
. . . . . . . 8
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b)) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ ))) = (1 ∩
1) |
| 126 | | an1 106 |
. . . . . . . 8
(1 ∩ 1) = 1 |
| 127 | 125, 126 | ax-r2 36 |
. . . . . . 7
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b)) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ ))) = 1 |
| 128 | 96, 127 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) = 1 |
| 129 | 89, 128 | 2an 79 |
. . . . 5
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) = ((a ∪ b⊥ ) ∩ 1) |
| 130 | | an1 106 |
. . . . 5
((a ∪ b⊥ ) ∩ 1) = (a ∪ b⊥ ) |
| 131 | 129, 130 | ax-r2 36 |
. . . 4
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) = (a ∪ b⊥ ) |
| 132 | 48, 131 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) = (a ∪ b⊥ ) |
| 133 | 6, 132 | ax-r2 36 |
. 2
((((a →5 b) ∩ (b
→5 a)) ∪ ((a →5 b)⊥ ∩ (b →5 a))) ∪ ((a
→5 b)⊥
∩ (b →5 a)⊥ )) = (a ∪ b⊥ ) |
| 134 | 1, 133 | ax-r2 36 |
1
((a →5 b) →5 (b →5 a)) = (a ∪
b⊥ ) |