Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > 3vcom | GIF version |
Description: 3-variable commutation theorem. (Contributed by NM, 19-Mar-1999.) |
Ref | Expression |
---|---|
3vcom | ((a →1 c) ∪ (b →1 c)) C ((a⊥ →1 c) ∩ (b⊥ →1 c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oran3 93 | . . . . 5 ((a⊥ →1 c)⊥ ∪ (b⊥ →1 c)⊥ ) = ((a⊥ →1 c) ∩ (b⊥ →1 c))⊥ | |
2 | 1 | ax-r1 35 | . . . 4 ((a⊥ →1 c) ∩ (b⊥ →1 c))⊥ = ((a⊥ →1 c)⊥ ∪ (b⊥ →1 c)⊥ ) |
3 | u1lem9ab 779 | . . . . . 6 (a⊥ →1 c)⊥ ≤ (a →1 c) | |
4 | u1lem9ab 779 | . . . . . 6 (b⊥ →1 c)⊥ ≤ (b →1 c) | |
5 | 3, 4 | le2or 168 | . . . . 5 ((a⊥ →1 c)⊥ ∪ (b⊥ →1 c)⊥ ) ≤ ((a →1 c) ∪ (b →1 c)) |
6 | 5 | lecom 180 | . . . 4 ((a⊥ →1 c)⊥ ∪ (b⊥ →1 c)⊥ ) C ((a →1 c) ∪ (b →1 c)) |
7 | 2, 6 | bctr 181 | . . 3 ((a⊥ →1 c) ∩ (b⊥ →1 c))⊥ C ((a →1 c) ∪ (b →1 c)) |
8 | 7 | comcom6 459 | . 2 ((a⊥ →1 c) ∩ (b⊥ →1 c)) C ((a →1 c) ∪ (b →1 c)) |
9 | 8 | comcom 453 | 1 ((a →1 c) ∪ (b →1 c)) C ((a⊥ →1 c) ∩ (b⊥ →1 c)) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |