Proof of Theorem u1lemanb
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
2 | 1 | ran 78 |
. 2
((a →1 b) ∩ b⊥ ) = ((a⊥ ∪ (a ∩ b))
∩ b⊥
) |
3 | | ax-a2 31 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ a⊥ ) |
4 | 3 | ran 78 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ b⊥ ) = (((a ∩ b) ∪
a⊥ ) ∩ b⊥ ) |
5 | | coman2 186 |
. . . . . 6
(a ∩ b) C b |
6 | 5 | comcom2 183 |
. . . . 5
(a ∩ b) C b⊥ |
7 | | coman1 185 |
. . . . . 6
(a ∩ b) C a |
8 | 7 | comcom2 183 |
. . . . 5
(a ∩ b) C a⊥ |
9 | 6, 8 | fh2r 474 |
. . . 4
(((a ∩ b) ∪ a⊥ ) ∩ b⊥ ) = (((a ∩ b) ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )) |
10 | | ax-a2 31 |
. . . . 5
(((a ∩ b) ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∩
b⊥ )) |
11 | | anass 76 |
. . . . . . . 8
((a ∩ b) ∩ b⊥ ) = (a ∩ (b ∩
b⊥ )) |
12 | | dff 101 |
. . . . . . . . . . 11
0 = (b ∩ b⊥ ) |
13 | 12 | lan 77 |
. . . . . . . . . 10
(a ∩ 0) = (a ∩ (b ∩
b⊥ )) |
14 | 13 | ax-r1 35 |
. . . . . . . . 9
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
15 | | an0 108 |
. . . . . . . . 9
(a ∩ 0) = 0 |
16 | 14, 15 | ax-r2 36 |
. . . . . . . 8
(a ∩ (b ∩ b⊥ )) = 0 |
17 | 11, 16 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∩ b⊥ ) = 0 |
18 | 17 | lor 70 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∩
b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
19 | | or0 102 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
20 | 18, 19 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∩
b⊥ )) = (a⊥ ∩ b⊥ ) |
21 | 10, 20 | ax-r2 36 |
. . . 4
(((a ∩ b) ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
22 | 9, 21 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
23 | 4, 22 | ax-r2 36 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
24 | 2, 23 | ax-r2 36 |
1
((a →1 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |