Proof of Theorem u5lemab
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →5 b) ∩ b) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ b) |
| 3 | | comanr2 465 |
. . . . 5
b C (a ∩ b) |
| 4 | | comanr2 465 |
. . . . 5
b C (a⊥ ∩ b) |
| 5 | 3, 4 | com2or 483 |
. . . 4
b C ((a ∩ b) ∪
(a⊥ ∩ b)) |
| 6 | | comanr2 465 |
. . . . 5
b⊥ C
(a⊥ ∩ b⊥ ) |
| 7 | 6 | comcom6 459 |
. . . 4
b C (a⊥ ∩ b⊥ ) |
| 8 | 5, 7 | fh1r 473 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ b) = ((((a ∩
b) ∪ (a⊥ ∩ b)) ∩ b)
∪ ((a⊥ ∩ b⊥ ) ∩ b)) |
| 9 | | lear 161 |
. . . . . . 7
(a ∩ b) ≤ b |
| 10 | | lear 161 |
. . . . . . 7
(a⊥ ∩ b) ≤ b |
| 11 | 9, 10 | lel2or 170 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ b |
| 12 | 11 | df2le2 136 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b) =
((a ∩ b) ∪ (a⊥ ∩ b)) |
| 13 | | an32 83 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ b) = ((a⊥ ∩ b) ∩ b⊥ ) |
| 14 | | anass 76 |
. . . . . . 7
((a⊥ ∩ b) ∩ b⊥ ) = (a⊥ ∩ (b ∩ b⊥ )) |
| 15 | | dff 101 |
. . . . . . . . . 10
0 = (b ∩ b⊥ ) |
| 16 | 15 | lan 77 |
. . . . . . . . 9
(a⊥ ∩ 0) =
(a⊥ ∩ (b ∩ b⊥ )) |
| 17 | 16 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩ (b ∩ b⊥ )) = (a⊥ ∩ 0) |
| 18 | | an0 108 |
. . . . . . . 8
(a⊥ ∩ 0) =
0 |
| 19 | 17, 18 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ (b ∩ b⊥ )) = 0 |
| 20 | 14, 19 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b) ∩ b⊥ ) = 0 |
| 21 | 13, 20 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ b) = 0 |
| 22 | 12, 21 | 2or 72 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b)
∪ ((a⊥ ∩ b⊥ ) ∩ b)) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ 0) |
| 23 | | or0 102 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ 0) = ((a ∩ b) ∪
(a⊥ ∩ b)) |
| 24 | 22, 23 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b)
∪ ((a⊥ ∩ b⊥ ) ∩ b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
| 25 | 8, 24 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ b) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
| 26 | 2, 25 | ax-r2 36 |
1
((a →5 b) ∩ b) =
((a ∩ b) ∪ (a⊥ ∩ b)) |