Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemc6 | GIF version |
Description: Commutation theorem for Sasaki implication. (Contributed by NM, 19-Mar-1999.) |
Ref | Expression |
---|---|
u1lemc6 | (a →1 b) C (a⊥ →1 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lea 160 | . . . . . 6 (a ∩ (a⊥ ∪ b⊥ )) ≤ a | |
2 | ax-a1 30 | . . . . . 6 a = a⊥ ⊥ | |
3 | 1, 2 | lbtr 139 | . . . . 5 (a ∩ (a⊥ ∪ b⊥ )) ≤ a⊥ ⊥ |
4 | leo 158 | . . . . 5 a⊥ ⊥ ≤ (a⊥ ⊥ ∪ (a⊥ ∩ b)) | |
5 | 3, 4 | letr 137 | . . . 4 (a ∩ (a⊥ ∪ b⊥ )) ≤ (a⊥ ⊥ ∪ (a⊥ ∩ b)) |
6 | ud1lem0c 277 | . . . 4 (a →1 b)⊥ = (a ∩ (a⊥ ∪ b⊥ )) | |
7 | df-i1 44 | . . . 4 (a⊥ →1 b) = (a⊥ ⊥ ∪ (a⊥ ∩ b)) | |
8 | 5, 6, 7 | le3tr1 140 | . . 3 (a →1 b)⊥ ≤ (a⊥ →1 b) |
9 | 8 | lecom 180 | . 2 (a →1 b)⊥ C (a⊥ →1 b) |
10 | 9 | comcom6 459 | 1 (a →1 b) C (a⊥ →1 b) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: negantlem2 849 |
Copyright terms: Public domain | W3C validator |