Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  u1lemc6 GIF version

Theorem u1lemc6 706
 Description: Commutation theorem for Sasaki implication. (Contributed by NM, 19-Mar-1999.)
Assertion
Ref Expression
u1lemc6 (a1 b) C (a1 b)

Proof of Theorem u1lemc6
StepHypRef Expression
1 lea 160 . . . . . 6 (a ∩ (ab )) ≤ a
2 ax-a1 30 . . . . . 6 a = a
31, 2lbtr 139 . . . . 5 (a ∩ (ab )) ≤ a
4 leo 158 . . . . 5 a ≤ (a ∪ (ab))
53, 4letr 137 . . . 4 (a ∩ (ab )) ≤ (a ∪ (ab))
6 ud1lem0c 277 . . . 4 (a1 b) = (a ∩ (ab ))
7 df-i1 44 . . . 4 (a1 b) = (a ∪ (ab))
85, 6, 7le3tr1 140 . . 3 (a1 b) ≤ (a1 b)
98lecom 180 . 2 (a1 b) C (a1 b)
109comcom6 459 1 (a1 b) C (a1 b)
 Colors of variables: term Syntax hints:   C wc 3  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →1 wi1 12 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133 This theorem is referenced by:  negantlem2  849
 Copyright terms: Public domain W3C validator