Proof of Theorem comi12
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. 2
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
2 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) ≤
a⊥ |
3 | | leo 158 |
. . . . . . . 8
a⊥ ≤ (a⊥ ∪ (a ∩ b)) |
4 | 2, 3 | letr 137 |
. . . . . . 7
(a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) ≤
(a⊥ ∪ (a ∩ b)) |
5 | 4 | lecom 180 |
. . . . . 6
(a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) C
(a⊥ ∪ (a ∩ b)) |
6 | 5 | comcom 453 |
. . . . 5
(a⊥ ∪ (a ∩ b)) C
(a⊥ ∩ (c⊥ ∩ a⊥ )⊥
) |
7 | | anor3 90 |
. . . . 5
(a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) =
(a ∪ (c⊥ ∩ a⊥
))⊥ |
8 | 6, 7 | cbtr 182 |
. . . 4
(a⊥ ∪ (a ∩ b)) C
(a ∪ (c⊥ ∩ a⊥
))⊥ |
9 | 8 | comcom7 460 |
. . 3
(a⊥ ∪ (a ∩ b)) C
(a ∪ (c⊥ ∩ a⊥ )) |
10 | | df-i2 45 |
. . . 4
(c →2 a) = (a ∪
(c⊥ ∩ a⊥ )) |
11 | 10 | ax-r1 35 |
. . 3
(a ∪ (c⊥ ∩ a⊥ )) = (c →2 a) |
12 | 9, 11 | cbtr 182 |
. 2
(a⊥ ∪ (a ∩ b)) C
(c →2 a) |
13 | 1, 12 | bctr 181 |
1
(a →1 b) C (c
→2 a) |