![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > comi12 | GIF version |
Description: Commutation theorem for →1 and →2 . (Contributed by NM, 5-Jul-2000.) |
Ref | Expression |
---|---|
comi12 | (a →1 b) C (c →2 a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . 2 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
2 | lea 160 | . . . . . . . 8 (a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) ≤ a⊥ | |
3 | leo 158 | . . . . . . . 8 a⊥ ≤ (a⊥ ∪ (a ∩ b)) | |
4 | 2, 3 | letr 137 | . . . . . . 7 (a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) ≤ (a⊥ ∪ (a ∩ b)) |
5 | 4 | lecom 180 | . . . . . 6 (a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) C (a⊥ ∪ (a ∩ b)) |
6 | 5 | comcom 453 | . . . . 5 (a⊥ ∪ (a ∩ b)) C (a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) |
7 | anor3 90 | . . . . 5 (a⊥ ∩ (c⊥ ∩ a⊥ )⊥ ) = (a ∪ (c⊥ ∩ a⊥ ))⊥ | |
8 | 6, 7 | cbtr 182 | . . . 4 (a⊥ ∪ (a ∩ b)) C (a ∪ (c⊥ ∩ a⊥ ))⊥ |
9 | 8 | comcom7 460 | . . 3 (a⊥ ∪ (a ∩ b)) C (a ∪ (c⊥ ∩ a⊥ )) |
10 | df-i2 45 | . . . 4 (c →2 a) = (a ∪ (c⊥ ∩ a⊥ )) | |
11 | 10 | ax-r1 35 | . . 3 (a ∪ (c⊥ ∩ a⊥ )) = (c →2 a) |
12 | 9, 11 | cbtr 182 | . 2 (a⊥ ∪ (a ∩ b)) C (c →2 a) |
13 | 1, 12 | bctr 181 | 1 (a →1 b) C (c →2 a) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: orbi 842 |
Copyright terms: Public domain | W3C validator |