Proof of Theorem u3lem7
Step | Hyp | Ref
| Expression |
1 | | comi31 508 |
. . . 4
a⊥ C
(a⊥ →3
b) |
2 | 1 | comcom6 459 |
. . 3
a C (a⊥ →3 b) |
3 | 2 | u3lemc4 703 |
. 2
(a →3 (a⊥ →3 b)) = (a⊥ ∪ (a⊥ →3 b)) |
4 | | df-i3 46 |
. . . 4
(a⊥ →3
b) = (((a⊥ ⊥ ∩
b) ∪ (a⊥ ⊥ ∩
b⊥ )) ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b))) |
5 | 4 | lor 70 |
. . 3
(a⊥ ∪ (a⊥ →3 b)) = (a⊥ ∪ (((a⊥ ⊥ ∩
b) ∪ (a⊥ ⊥ ∩
b⊥ )) ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b)))) |
6 | | or12 80 |
. . . 4
(a⊥ ∪
(((a⊥ ⊥
∩ b) ∪ (a⊥ ⊥ ∩
b⊥ )) ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b)))) = (((a⊥ ⊥ ∩
b) ∪ (a⊥ ⊥ ∩
b⊥ )) ∪ (a⊥ ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b)))) |
7 | | ax-a1 30 |
. . . . . . . . 9
a = a⊥
⊥ |
8 | 7 | ran 78 |
. . . . . . . 8
(a ∩ b) = (a⊥ ⊥ ∩
b) |
9 | 7 | ran 78 |
. . . . . . . 8
(a ∩ b⊥ ) = (a⊥ ⊥ ∩
b⊥ ) |
10 | 8, 9 | 2or 72 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a⊥ ⊥ ∩
b) ∪ (a⊥ ⊥ ∩
b⊥ )) |
11 | 10 | ax-r1 35 |
. . . . . 6
((a⊥
⊥ ∩ b) ∪ (a⊥ ⊥ ∩
b⊥ )) = ((a ∩ b) ∪
(a ∩ b⊥ )) |
12 | | orabs 120 |
. . . . . 6
(a⊥ ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b))) = a⊥ |
13 | 11, 12 | 2or 72 |
. . . . 5
(((a⊥
⊥ ∩ b) ∪ (a⊥ ⊥ ∩
b⊥ )) ∪ (a⊥ ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b)))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) |
14 | | ax-a2 31 |
. . . . 5
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
15 | 13, 14 | ax-r2 36 |
. . . 4
(((a⊥
⊥ ∩ b) ∪ (a⊥ ⊥ ∩
b⊥ )) ∪ (a⊥ ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b)))) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
16 | 6, 15 | ax-r2 36 |
. . 3
(a⊥ ∪
(((a⊥ ⊥
∩ b) ∪ (a⊥ ⊥ ∩
b⊥ )) ∪ (a⊥ ∩ (a⊥ ⊥ ∪
b)))) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
17 | 5, 16 | ax-r2 36 |
. 2
(a⊥ ∪ (a⊥ →3 b)) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
18 | 3, 17 | ax-r2 36 |
1
(a →3 (a⊥ →3 b)) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |