Proof of Theorem u2lem7n
Step | Hyp | Ref
| Expression |
1 | | u2lem7 773 |
. . 3
(a →2 (a⊥ →2 b)) = (((a ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) |
2 | | ax-a2 31 |
. . . . . . 7
((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b⊥ )) |
3 | | anor3 90 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
4 | | anor1 88 |
. . . . . . . 8
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
5 | 3, 4 | 2or 72 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ (a ∩ b⊥ )) = ((a ∪ b)⊥ ∪ (a⊥ ∪ b)⊥ ) |
6 | 2, 5 | ax-r2 36 |
. . . . . 6
((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b)⊥ ∪ (a⊥ ∪ b)⊥ ) |
7 | | oran3 93 |
. . . . . 6
((a ∪ b)⊥ ∪ (a⊥ ∪ b)⊥ ) = ((a ∪ b) ∩
(a⊥ ∪ b))⊥ |
8 | 6, 7 | ax-r2 36 |
. . . . 5
((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b) ∩
(a⊥ ∪ b))⊥ |
9 | 8 | ax-r5 38 |
. . . 4
(((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) = (((a ∪
b) ∩ (a⊥ ∪ b))⊥ ∪ b) |
10 | | oran2 92 |
. . . 4
(((a ∪ b) ∩ (a⊥ ∪ b))⊥ ∪ b) = (((a ∪
b) ∩ (a⊥ ∪ b)) ∩ b⊥
)⊥ |
11 | 9, 10 | ax-r2 36 |
. . 3
(((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) = (((a ∪
b) ∩ (a⊥ ∪ b)) ∩ b⊥
)⊥ |
12 | 1, 11 | ax-r2 36 |
. 2
(a →2 (a⊥ →2 b)) = (((a ∪
b) ∩ (a⊥ ∪ b)) ∩ b⊥
)⊥ |
13 | 12 | con2 67 |
1
(a →2 (a⊥ →2 b))⊥ = (((a ∪ b) ∩
(a⊥ ∪ b)) ∩ b⊥ ) |