Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemc1 | GIF version |
Description: Commutation theorem for Dishkant implication. (Contributed by NM, 14-Dec-1997.) |
Ref | Expression |
---|---|
u2lemc1 | b C (a →2 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comid 187 | . . 3 b C b | |
2 | comanr2 465 | . . . 4 b⊥ C (a⊥ ∩ b⊥ ) | |
3 | 2 | comcom6 459 | . . 3 b C (a⊥ ∩ b⊥ ) |
4 | 1, 3 | com2or 483 | . 2 b C (b ∪ (a⊥ ∩ b⊥ )) |
5 | df-i2 45 | . . 3 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
6 | 5 | ax-r1 35 | . 2 (b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
7 | 4, 6 | cbtr 182 | 1 b C (a →2 b) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u2lemc3 692 u21lembi 727 u2lem3 750 imp3 841 oa23 936 |
Copyright terms: Public domain | W3C validator |