Proof of Theorem u21lembi
Step | Hyp | Ref
| Expression |
1 | | u2lemc1 681 |
. . . . 5
b C (a →2 b) |
2 | 1 | comcom3 454 |
. . . 4
b⊥ C
(a →2 b) |
3 | | comanr1 464 |
. . . . 5
b C (b ∩ a) |
4 | 3 | comcom3 454 |
. . . 4
b⊥ C
(b ∩ a) |
5 | 2, 4 | fh2 470 |
. . 3
((a →2 b) ∩ (b⊥ ∪ (b ∩ a))) =
(((a →2 b) ∩ b⊥ ) ∪ ((a →2 b) ∩ (b
∩ a))) |
6 | | u2lemanb 616 |
. . . 4
((a →2 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
7 | | u2lemab 611 |
. . . . . 6
((a →2 b) ∩ b) =
b |
8 | 7 | ran 78 |
. . . . 5
(((a →2 b) ∩ b)
∩ a) = (b ∩ a) |
9 | | anass 76 |
. . . . 5
(((a →2 b) ∩ b)
∩ a) = ((a →2 b) ∩ (b
∩ a)) |
10 | | ancom 74 |
. . . . 5
(b ∩ a) = (a ∩
b) |
11 | 8, 9, 10 | 3tr2 64 |
. . . 4
((a →2 b) ∩ (b
∩ a)) = (a ∩ b) |
12 | 6, 11 | 2or 72 |
. . 3
(((a →2 b) ∩ b⊥ ) ∪ ((a →2 b) ∩ (b
∩ a))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) |
13 | | ax-a2 31 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) =
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
14 | 5, 12, 13 | 3tr 65 |
. 2
((a →2 b) ∩ (b⊥ ∪ (b ∩ a))) =
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
15 | | df-i1 44 |
. . 3
(b →1 a) = (b⊥ ∪ (b ∩ a)) |
16 | 15 | lan 77 |
. 2
((a →2 b) ∩ (b
→1 a)) = ((a →2 b) ∩ (b⊥ ∪ (b ∩ a))) |
17 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
18 | 14, 16, 17 | 3tr1 63 |
1
((a →2 b) ∩ (b
→1 a)) = (a ≡ b) |