| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u3lem14mp | GIF version | ||
| Description: Used to prove →1 modus ponens rule in →3 system. (Contributed by NM, 19-Jan-1998.) |
| Ref | Expression |
|---|---|
| u3lem14mp | ((a →3 b⊥ )⊥ →3 (a →3 (a →3 b))) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lear 161 | . . . 4 (((a ∪ b⊥ ⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥ ))) ≤ (a⊥ ∪ (a ∩ b⊥ ⊥ )) | |
| 2 | lear 161 | . . . . . 6 (a ∩ b⊥ ⊥ ) ≤ b⊥ ⊥ | |
| 3 | ax-a1 30 | . . . . . . 7 b = b⊥ ⊥ | |
| 4 | 3 | ax-r1 35 | . . . . . 6 b⊥ ⊥ = b |
| 5 | 2, 4 | lbtr 139 | . . . . 5 (a ∩ b⊥ ⊥ ) ≤ b |
| 6 | 5 | lelor 166 | . . . 4 (a⊥ ∪ (a ∩ b⊥ ⊥ )) ≤ (a⊥ ∪ b) |
| 7 | 1, 6 | letr 137 | . . 3 (((a ∪ b⊥ ⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥ ))) ≤ (a⊥ ∪ b) |
| 8 | ud3lem0c 279 | . . 3 (a →3 b⊥ )⊥ = (((a ∪ b⊥ ⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥ ))) | |
| 9 | u3lem5 763 | . . 3 (a →3 (a →3 b)) = (a⊥ ∪ b) | |
| 10 | 7, 8, 9 | le3tr1 140 | . 2 (a →3 b⊥ )⊥ ≤ (a →3 (a →3 b)) |
| 11 | 10 | u3lemle1 712 | 1 ((a →3 b⊥ )⊥ →3 (a →3 (a →3 b))) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |