Proof of Theorem u3lem15
| Step | Hyp | Ref
| Expression |
| 1 | | dfi3b 499 |
. . 3
(a →3 b) = ((a⊥ ∪ b) ∩ ((a
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b))) |
| 2 | 1 | ran 78 |
. 2
((a →3 b) ∩ (a
∪ b)) = (((a⊥ ∪ b) ∩ ((a
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b))) ∩ (a
∪ b)) |
| 3 | | anass 76 |
. 2
(((a⊥ ∪
b) ∩ ((a ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b))) ∩ (a
∪ b)) = ((a⊥ ∪ b) ∩ (((a
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) ∩ (a
∪ b))) |
| 4 | | comor1 461 |
. . . . . 6
(a ∪ b) C a |
| 5 | 4 | comcom2 183 |
. . . . . . 7
(a ∪ b) C a⊥ |
| 6 | | comor2 462 |
. . . . . . . 8
(a ∪ b) C b |
| 7 | 6 | comcom2 183 |
. . . . . . 7
(a ∪ b) C b⊥ |
| 8 | 5, 7 | com2an 484 |
. . . . . 6
(a ∪ b) C (a⊥ ∩ b⊥ ) |
| 9 | 4, 8 | com2or 483 |
. . . . 5
(a ∪ b) C (a
∪ (a⊥ ∩ b⊥ )) |
| 10 | | leao4 165 |
. . . . . . 7
(a⊥ ∩ b) ≤ (a ∪
b) |
| 11 | 10 | lecom 180 |
. . . . . 6
(a⊥ ∩ b) C (a
∪ b) |
| 12 | 11 | comcom 453 |
. . . . 5
(a ∪ b) C (a⊥ ∩ b) |
| 13 | 9, 12 | fh1r 473 |
. . . 4
(((a ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) ∩ (a
∪ b)) = (((a ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b))
∪ ((a⊥ ∩ b) ∩ (a
∪ b))) |
| 14 | 4, 8 | fh1r 473 |
. . . . . 6
((a ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b)) =
((a ∩ (a ∪ b))
∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b))) |
| 15 | | anabs 121 |
. . . . . . 7
(a ∩ (a ∪ b)) =
a |
| 16 | | oran 87 |
. . . . . . . . 9
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 17 | 16 | lan 77 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
| 18 | | dff 101 |
. . . . . . . . 9
0 = ((a⊥ ∩
b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
| 19 | 18 | ax-r1 35 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥ ) =
0 |
| 20 | 17, 19 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
0 |
| 21 | 15, 20 | 2or 72 |
. . . . . 6
((a ∩ (a ∪ b))
∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b))) =
(a ∪ 0) |
| 22 | | or0 102 |
. . . . . 6
(a ∪ 0) = a |
| 23 | 14, 21, 22 | 3tr 65 |
. . . . 5
((a ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b)) =
a |
| 24 | 10 | df2le2 136 |
. . . . 5
((a⊥ ∩ b) ∩ (a
∪ b)) = (a⊥ ∩ b) |
| 25 | 23, 24 | 2or 72 |
. . . 4
(((a ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b))
∪ ((a⊥ ∩ b) ∩ (a
∪ b))) = (a ∪ (a⊥ ∩ b)) |
| 26 | 13, 25 | ax-r2 36 |
. . 3
(((a ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) ∩ (a
∪ b)) = (a ∪ (a⊥ ∩ b)) |
| 27 | 26 | lan 77 |
. 2
((a⊥ ∪ b) ∩ (((a
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) ∩ (a
∪ b))) = ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |
| 28 | 2, 3, 27 | 3tr 65 |
1
((a →3 b) ∩ (a
∪ b)) = ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |