Proof of Theorem u3lemc4
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. 2
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | | ulemc3.1 |
. . . . . . . 8
a C b |
3 | 2 | comcom3 454 |
. . . . . . 7
a⊥ C
b |
4 | 2 | comcom4 455 |
. . . . . . 7
a⊥ C
b⊥ |
5 | 3, 4 | fh1 469 |
. . . . . 6
(a⊥ ∩ (b ∪ b⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
6 | 5 | ax-r1 35 |
. . . . 5
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (b ∪ b⊥ )) |
7 | | df-t 41 |
. . . . . . . 8
1 = (b ∪ b⊥ ) |
8 | 7 | ax-r1 35 |
. . . . . . 7
(b ∪ b⊥ ) = 1 |
9 | 8 | lan 77 |
. . . . . 6
(a⊥ ∩ (b ∪ b⊥ )) = (a⊥ ∩ 1) |
10 | | an1 106 |
. . . . . 6
(a⊥ ∩ 1) =
a⊥ |
11 | 9, 10 | ax-r2 36 |
. . . . 5
(a⊥ ∩ (b ∪ b⊥ )) = a⊥ |
12 | 6, 11 | ax-r2 36 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = a⊥ |
13 | | comid 187 |
. . . . . . 7
a C a |
14 | 13 | comcom2 183 |
. . . . . 6
a C a⊥ |
15 | 14, 2 | fh1 469 |
. . . . 5
(a ∩ (a⊥ ∪ b)) = ((a ∩
a⊥ ) ∪ (a ∩ b)) |
16 | | ax-a2 31 |
. . . . . 6
((a ∩ a⊥ ) ∪ (a ∩ b)) =
((a ∩ b) ∪ (a
∩ a⊥
)) |
17 | | dff 101 |
. . . . . . . . 9
0 = (a ∩ a⊥ ) |
18 | 17 | ax-r1 35 |
. . . . . . . 8
(a ∩ a⊥ ) = 0 |
19 | 18 | lor 70 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ a⊥ )) = ((a ∩ b) ∪
0) |
20 | | or0 102 |
. . . . . . 7
((a ∩ b) ∪ 0) = (a
∩ b) |
21 | 19, 20 | ax-r2 36 |
. . . . . 6
((a ∩ b) ∪ (a
∩ a⊥ )) = (a ∩ b) |
22 | 16, 21 | ax-r2 36 |
. . . . 5
((a ∩ a⊥ ) ∪ (a ∩ b)) =
(a ∩ b) |
23 | 15, 22 | ax-r2 36 |
. . . 4
(a ∩ (a⊥ ∪ b)) = (a ∩
b) |
24 | 12, 23 | 2or 72 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ (a ∩ b)) |
25 | 14, 2 | fh4 472 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ a) ∩ (a⊥ ∪ b)) |
26 | | ancom 74 |
. . . . 5
((a⊥ ∪ a) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a⊥ ∪ a)) |
27 | | ax-a2 31 |
. . . . . . . 8
(a⊥ ∪ a) = (a ∪
a⊥ ) |
28 | | df-t 41 |
. . . . . . . . 9
1 = (a ∪ a⊥ ) |
29 | 28 | ax-r1 35 |
. . . . . . . 8
(a ∪ a⊥ ) = 1 |
30 | 27, 29 | ax-r2 36 |
. . . . . . 7
(a⊥ ∪ a) = 1 |
31 | 30 | lan 77 |
. . . . . 6
((a⊥ ∪ b) ∩ (a⊥ ∪ a)) = ((a⊥ ∪ b) ∩ 1) |
32 | | an1 106 |
. . . . . 6
((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) |
33 | 31, 32 | ax-r2 36 |
. . . . 5
((a⊥ ∪ b) ∩ (a⊥ ∪ a)) = (a⊥ ∪ b) |
34 | 26, 33 | ax-r2 36 |
. . . 4
((a⊥ ∪ a) ∩ (a⊥ ∪ b)) = (a⊥ ∪ b) |
35 | 25, 34 | ax-r2 36 |
. . 3
(a⊥ ∪ (a ∩ b)) =
(a⊥ ∪ b) |
36 | 24, 35 | ax-r2 36 |
. 2
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
37 | 1, 36 | ax-r2 36 |
1
(a →3 b) = (a⊥ ∪ b) |