Proof of Theorem u3lem6
Step | Hyp | Ref
| Expression |
1 | | comi31 508 |
. . 3
a C (a →3 (a →3 b)) |
2 | 1 | u3lemc4 703 |
. 2
(a →3 (a →3 (a →3 b))) = (a⊥ ∪ (a →3 (a →3 b))) |
3 | | u3lem5 763 |
. . . 4
(a →3 (a →3 b)) = (a⊥ ∪ b) |
4 | 3 | lor 70 |
. . 3
(a⊥ ∪ (a →3 (a →3 b))) = (a⊥ ∪ (a⊥ ∪ b)) |
5 | | ax-a3 32 |
. . . . 5
((a⊥ ∪ a⊥ ) ∪ b) = (a⊥ ∪ (a⊥ ∪ b)) |
6 | 5 | ax-r1 35 |
. . . 4
(a⊥ ∪ (a⊥ ∪ b)) = ((a⊥ ∪ a⊥ ) ∪ b) |
7 | | oridm 110 |
. . . . . 6
(a⊥ ∪ a⊥ ) = a⊥ |
8 | 7 | ax-r5 38 |
. . . . 5
((a⊥ ∪ a⊥ ) ∪ b) = (a⊥ ∪ b) |
9 | 3 | ax-r1 35 |
. . . . 5
(a⊥ ∪ b) = (a
→3 (a →3
b)) |
10 | 8, 9 | ax-r2 36 |
. . . 4
((a⊥ ∪ a⊥ ) ∪ b) = (a
→3 (a →3
b)) |
11 | 6, 10 | ax-r2 36 |
. . 3
(a⊥ ∪ (a⊥ ∪ b)) = (a
→3 (a →3
b)) |
12 | 4, 11 | ax-r2 36 |
. 2
(a⊥ ∪ (a →3 (a →3 b))) = (a
→3 (a →3
b)) |
13 | 2, 12 | ax-r2 36 |
1
(a →3 (a →3 (a →3 b))) = (a
→3 (a →3
b)) |