Proof of Theorem u4lem5
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. 2
(a →4 (a →4 b)) = (((a ∩
(a →4 b)) ∪ (a⊥ ∩ (a →4 b))) ∪ ((a⊥ ∪ (a →4 b)) ∩ (a
→4 b)⊥
)) |
2 | | ancom 74 |
. . . . . . 7
(a ∩ (a →4 b)) = ((a
→4 b) ∩ a) |
3 | | u4lemaa 603 |
. . . . . . 7
((a →4 b) ∩ a) =
(a ∩ b) |
4 | 2, 3 | ax-r2 36 |
. . . . . 6
(a ∩ (a →4 b)) = (a ∩
b) |
5 | | ancom 74 |
. . . . . . 7
(a⊥ ∩ (a →4 b)) = ((a
→4 b) ∩ a⊥ ) |
6 | | u4lemana 608 |
. . . . . . 7
((a →4 b) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
7 | 5, 6 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a →4 b)) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
8 | 4, 7 | 2or 72 |
. . . . 5
((a ∩ (a →4 b)) ∪ (a⊥ ∩ (a →4 b))) = ((a ∩
b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
9 | | ax-a3 32 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
10 | 9 | ax-r1 35 |
. . . . 5
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
11 | 8, 10 | ax-r2 36 |
. . . 4
((a ∩ (a →4 b)) ∪ (a⊥ ∩ (a →4 b))) = (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
12 | | ax-a2 31 |
. . . . . . 7
(a⊥ ∪ (a →4 b)) = ((a
→4 b) ∪ a⊥ ) |
13 | | u4lemona 628 |
. . . . . . 7
((a →4 b) ∪ a⊥ ) = (a⊥ ∪ b) |
14 | 12, 13 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (a →4 b)) = (a⊥ ∪ b) |
15 | | ud4lem0c 280 |
. . . . . 6
(a →4 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
16 | 14, 15 | 2an 79 |
. . . . 5
((a⊥ ∪
(a →4 b)) ∩ (a
→4 b)⊥ ) =
((a⊥ ∪ b) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b))) |
17 | | ancom 74 |
. . . . . 6
((a⊥ ∪ b) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b))) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (a⊥ ∪ b)) |
18 | | anass 76 |
. . . . . . 7
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (a⊥ ∪ b)) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ (a⊥ ∪ b))) |
19 | | comor1 461 |
. . . . . . . . . . . . 13
(a⊥ ∪ b) C a⊥ |
20 | 19 | comcom7 460 |
. . . . . . . . . . . 12
(a⊥ ∪ b) C a |
21 | | comor2 462 |
. . . . . . . . . . . . 13
(a⊥ ∪ b) C b |
22 | 21 | comcom2 183 |
. . . . . . . . . . . 12
(a⊥ ∪ b) C b⊥ |
23 | 20, 22 | com2an 484 |
. . . . . . . . . . 11
(a⊥ ∪ b) C (a
∩ b⊥
) |
24 | 23, 21 | fh1r 473 |
. . . . . . . . . 10
(((a ∩ b⊥ ) ∪ b) ∩ (a⊥ ∪ b)) = (((a ∩
b⊥ ) ∩ (a⊥ ∪ b)) ∪ (b
∩ (a⊥ ∪ b))) |
25 | | ax-a2 31 |
. . . . . . . . . . 11
(((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) ∪ (b
∩ (a⊥ ∪ b))) = ((b ∩
(a⊥ ∪ b)) ∪ ((a
∩ b⊥ ) ∩ (a⊥ ∪ b))) |
26 | | leor 159 |
. . . . . . . . . . . . . 14
b ≤ (a⊥ ∪ b) |
27 | 26 | df2le2 136 |
. . . . . . . . . . . . 13
(b ∩ (a⊥ ∪ b)) = b |
28 | | oran2 92 |
. . . . . . . . . . . . . . 15
(a⊥ ∪ b) = (a ∩
b⊥
)⊥ |
29 | 28 | lan 77 |
. . . . . . . . . . . . . 14
((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) = ((a ∩
b⊥ ) ∩ (a ∩ b⊥ )⊥
) |
30 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = ((a ∩ b⊥ ) ∩ (a ∩ b⊥ )⊥
) |
31 | 30 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a ∩ b⊥ ) ∩ (a ∩ b⊥ )⊥ ) =
0 |
32 | 29, 31 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) = 0 |
33 | 27, 32 | 2or 72 |
. . . . . . . . . . . 12
((b ∩ (a⊥ ∪ b)) ∪ ((a
∩ b⊥ ) ∩ (a⊥ ∪ b))) = (b ∪
0) |
34 | | or0 102 |
. . . . . . . . . . . 12
(b ∪ 0) = b |
35 | 33, 34 | ax-r2 36 |
. . . . . . . . . . 11
((b ∩ (a⊥ ∪ b)) ∪ ((a
∩ b⊥ ) ∩ (a⊥ ∪ b))) = b |
36 | 25, 35 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) ∪ (b
∩ (a⊥ ∪ b))) = b |
37 | 24, 36 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b⊥ ) ∪ b) ∩ (a⊥ ∪ b)) = b |
38 | 37 | lan 77 |
. . . . . . . 8
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ (a⊥ ∪ b))) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ b) |
39 | | ancom 74 |
. . . . . . . 8
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ b) = (b ∩
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))) |
40 | 38, 39 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ (a⊥ ∪ b))) = (b ∩
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))) |
41 | 18, 40 | ax-r2 36 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (a⊥ ∪ b)) = (b ∩
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))) |
42 | 17, 41 | ax-r2 36 |
. . . . 5
((a⊥ ∪ b) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b))) = (b ∩
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))) |
43 | 16, 42 | ax-r2 36 |
. . . 4
((a⊥ ∪
(a →4 b)) ∩ (a
→4 b)⊥ ) =
(b ∩ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))) |
44 | 11, 43 | 2or 72 |
. . 3
(((a ∩ (a →4 b)) ∪ (a⊥ ∩ (a →4 b))) ∪ ((a⊥ ∪ (a →4 b)) ∩ (a
→4 b)⊥ ))
= ((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (b ∩ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )))) |
45 | | comanr2 465 |
. . . . . . 7
b C (a ∩ b) |
46 | | comanr2 465 |
. . . . . . 7
b C (a⊥ ∩ b) |
47 | 45, 46 | com2or 483 |
. . . . . 6
b C ((a ∩ b) ∪
(a⊥ ∩ b)) |
48 | | comanr2 465 |
. . . . . . 7
b⊥ C
(a⊥ ∩ b⊥ ) |
49 | 48 | comcom6 459 |
. . . . . 6
b C (a⊥ ∩ b⊥ ) |
50 | 47, 49 | com2or 483 |
. . . . 5
b C (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
51 | | comorr2 463 |
. . . . . . 7
b⊥ C
(a⊥ ∪ b⊥ ) |
52 | | comorr2 463 |
. . . . . . 7
b⊥ C
(a ∪ b⊥ ) |
53 | 51, 52 | com2an 484 |
. . . . . 6
b⊥ C
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
54 | 53 | comcom6 459 |
. . . . 5
b C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
55 | 50, 54 | fh4 472 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (b ∩ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )))) = (((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )))) |
56 | | or32 82 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ b) = ((((a ∩
b) ∪ (a⊥ ∩ b)) ∪ b)
∪ (a⊥ ∩ b⊥ )) |
57 | | lear 161 |
. . . . . . . . . 10
(a ∩ b) ≤ b |
58 | | lear 161 |
. . . . . . . . . 10
(a⊥ ∩ b) ≤ b |
59 | 57, 58 | lel2or 170 |
. . . . . . . . 9
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ b |
60 | 59 | df-le2 131 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ b) =
b |
61 | 60 | ax-r5 38 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ b)
∪ (a⊥ ∩ b⊥ )) = (b ∪ (a⊥ ∩ b⊥ )) |
62 | 56, 61 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ b) = (b ∪
(a⊥ ∩ b⊥ )) |
63 | | comor1 461 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ ) C a⊥ |
64 | 63 | comcom7 460 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ ) C a |
65 | | comor2 462 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ ) C b⊥ |
66 | 65 | comcom7 460 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ ) C b |
67 | 64, 66 | com2an 484 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C (a ∩ b) |
68 | 63, 66 | com2an 484 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C (a⊥ ∩ b) |
69 | 67, 68 | com2or 483 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C ((a ∩ b) ∪
(a⊥ ∩ b)) |
70 | 63, 65 | com2an 484 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (a⊥ ∩ b⊥ ) |
71 | 69, 70 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
72 | 64, 65 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C (a ∪ b⊥ ) |
73 | 71, 72 | fh4 472 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))) = (((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b⊥ ))) |
74 | | or32 82 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) |
75 | | ax-a3 32 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) |
76 | | or4 84 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∪ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
77 | | ax-a2 31 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (a⊥ ∪ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a⊥ ∪ b⊥ ))) |
78 | | oran3 93 |
. . . . . . . . . . . . . . . . 17
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
79 | 78 | lor 70 |
. . . . . . . . . . . . . . . 16
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = ((a ∩ b) ∪
(a ∩ b)⊥ ) |
80 | | df-t 41 |
. . . . . . . . . . . . . . . . 17
1 = ((a ∩ b) ∪ (a
∩ b)⊥
) |
81 | 80 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a ∩ b) ∪ (a
∩ b)⊥ ) =
1 |
82 | 79, 81 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = 1 |
83 | 82 | lor 70 |
. . . . . . . . . . . . . 14
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a⊥ ∪ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 1) |
84 | | or1 104 |
. . . . . . . . . . . . . 14
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ 1) = 1 |
85 | 83, 84 | ax-r2 36 |
. . . . . . . . . . . . 13
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a⊥ ∪ b⊥ ))) = 1 |
86 | 77, 85 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∪ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = 1 |
87 | 76, 86 | ax-r2 36 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) = 1 |
88 | 75, 87 | ax-r2 36 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = 1 |
89 | 74, 88 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = 1 |
90 | | ax-a3 32 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∪ b⊥ ))) |
91 | | or4 84 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∪ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∪ b⊥
))) |
92 | | oran1 91 |
. . . . . . . . . . . . . . 15
(a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
93 | 92 | lor 70 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∪ (a
∪ b⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) |
94 | | df-t 41 |
. . . . . . . . . . . . . . 15
1 = ((a⊥ ∩
b) ∪ (a⊥ ∩ b)⊥ ) |
95 | 94 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) = 1 |
96 | 93, 95 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∩ b) ∪ (a
∪ b⊥ )) =
1 |
97 | 96 | lor 70 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∪ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ 1) |
98 | | or1 104 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 1) = 1 |
99 | 97, 98 | ax-r2 36 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∪ b⊥ ))) =
1 |
100 | 91, 99 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∪ b⊥ ))) = 1 |
101 | 90, 100 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b⊥ )) = 1 |
102 | 89, 101 | 2an 79 |
. . . . . . . 8
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b⊥ ))) = (1 ∩
1) |
103 | | an1 106 |
. . . . . . . 8
(1 ∩ 1) = 1 |
104 | 102, 103 | ax-r2 36 |
. . . . . . 7
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ b⊥ ))) = 1 |
105 | 73, 104 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))) = 1 |
106 | 62, 105 | 2an 79 |
. . . . 5
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )))) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ 1) |
107 | | an1 106 |
. . . . . 6
((b ∪ (a⊥ ∩ b⊥ )) ∩ 1) = (b ∪ (a⊥ ∩ b⊥ )) |
108 | | ax-a2 31 |
. . . . . 6
(b ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) |
109 | 107, 108 | ax-r2 36 |
. . . . 5
((b ∪ (a⊥ ∩ b⊥ )) ∩ 1) = ((a⊥ ∩ b⊥ ) ∪ b) |
110 | 106, 109 | ax-r2 36 |
. . . 4
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )))) = ((a⊥ ∩ b⊥ ) ∪ b) |
111 | 55, 110 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (b ∩ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )))) = ((a⊥ ∩ b⊥ ) ∪ b) |
112 | 44, 111 | ax-r2 36 |
. 2
(((a ∩ (a →4 b)) ∪ (a⊥ ∩ (a →4 b))) ∪ ((a⊥ ∪ (a →4 b)) ∩ (a
→4 b)⊥ ))
= ((a⊥ ∩ b⊥ ) ∪ b) |
113 | 1, 112 | ax-r2 36 |
1
(a →4 (a →4 b)) = ((a⊥ ∩ b⊥ ) ∪ b) |