Proof of Theorem u4lem6
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. 2
(a →4 (a →4 (a →4 b))) = (((a
∩ (a →4 (a →4 b))) ∪ (a⊥ ∩ (a →4 (a →4 b)))) ∪ ((a⊥ ∪ (a →4 (a →4 b))) ∩ (a
→4 (a →4
b))⊥
)) |
2 | | u4lem5 764 |
. . . . . . . 8
(a →4 (a →4 b)) = ((a⊥ ∩ b⊥ ) ∪ b) |
3 | 2 | lan 77 |
. . . . . . 7
(a ∩ (a →4 (a →4 b))) = (a ∩
((a⊥ ∩ b⊥ ) ∪ b)) |
4 | | coman1 185 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C a⊥ |
5 | 4 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C a |
6 | | coman2 186 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C b⊥ |
7 | 6 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C b |
8 | 5, 7 | fh2 470 |
. . . . . . . 8
(a ∩ ((a⊥ ∩ b⊥ ) ∪ b)) = ((a ∩
(a⊥ ∩ b⊥ )) ∪ (a ∩ b)) |
9 | | ax-a2 31 |
. . . . . . . . 9
((a ∩ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) =
((a ∩ b) ∪ (a
∩ (a⊥ ∩ b⊥ ))) |
10 | | ancom 74 |
. . . . . . . . . . . 12
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
11 | | anass 76 |
. . . . . . . . . . . 12
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
12 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = (a ∩ a⊥ ) |
13 | 12 | ax-r1 35 |
. . . . . . . . . . . . . 14
(a ∩ a⊥ ) = 0 |
14 | 13 | lan 77 |
. . . . . . . . . . . . 13
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
15 | | an0 108 |
. . . . . . . . . . . . 13
(b⊥ ∩ 0) =
0 |
16 | 14, 15 | ax-r2 36 |
. . . . . . . . . . . 12
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
17 | 10, 11, 16 | 3tr2 64 |
. . . . . . . . . . 11
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
18 | 17 | lor 70 |
. . . . . . . . . 10
((a ∩ b) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
0) |
19 | | or0 102 |
. . . . . . . . . 10
((a ∩ b) ∪ 0) = (a
∩ b) |
20 | 18, 19 | ax-r2 36 |
. . . . . . . . 9
((a ∩ b) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
21 | 9, 20 | ax-r2 36 |
. . . . . . . 8
((a ∩ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) =
(a ∩ b) |
22 | 8, 21 | ax-r2 36 |
. . . . . . 7
(a ∩ ((a⊥ ∩ b⊥ ) ∪ b)) = (a ∩
b) |
23 | 3, 22 | ax-r2 36 |
. . . . . 6
(a ∩ (a →4 (a →4 b))) = (a ∩
b) |
24 | 2 | lan 77 |
. . . . . . 7
(a⊥ ∩ (a →4 (a →4 b))) = (a⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ b)) |
25 | 4, 7 | fh2 470 |
. . . . . . . 8
(a⊥ ∩
((a⊥ ∩ b⊥ ) ∪ b)) = ((a⊥ ∩ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) |
26 | | anass 76 |
. . . . . . . . . . 11
((a⊥ ∩ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ (a⊥ ∩ b⊥ )) |
27 | 26 | ax-r1 35 |
. . . . . . . . . 10
(a⊥ ∩ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ a⊥ ) ∩ b⊥ ) |
28 | | anidm 111 |
. . . . . . . . . . 11
(a⊥ ∩ a⊥ ) = a⊥ |
29 | 28 | ran 78 |
. . . . . . . . . 10
((a⊥ ∩ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
30 | 27, 29 | ax-r2 36 |
. . . . . . . . 9
(a⊥ ∩ (a⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
31 | 30 | ax-r5 38 |
. . . . . . . 8
((a⊥ ∩
(a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
32 | 25, 31 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩
((a⊥ ∩ b⊥ ) ∪ b)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
33 | 24, 32 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a →4 (a →4 b))) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
34 | 23, 33 | 2or 72 |
. . . . 5
((a ∩ (a →4 (a →4 b))) ∪ (a⊥ ∩ (a →4 (a →4 b)))) = ((a
∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
35 | | id 59 |
. . . . 5
((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) = ((a ∩
b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
36 | 34, 35 | ax-r2 36 |
. . . 4
((a ∩ (a →4 (a →4 b))) ∪ (a⊥ ∩ (a →4 (a →4 b)))) = ((a
∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
37 | 2 | lor 70 |
. . . . . . 7
(a⊥ ∪ (a →4 (a →4 b))) = (a⊥ ∪ ((a⊥ ∩ b⊥ ) ∪ b)) |
38 | | or12 80 |
. . . . . . . 8
(a⊥ ∪
((a⊥ ∩ b⊥ ) ∪ b)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∪ b)) |
39 | | comor1 461 |
. . . . . . . . . 10
(a⊥ ∪ b) C a⊥ |
40 | | comor2 462 |
. . . . . . . . . . 11
(a⊥ ∪ b) C b |
41 | 40 | comcom2 183 |
. . . . . . . . . 10
(a⊥ ∪ b) C b⊥ |
42 | 39, 41 | fh3r 475 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∪ b)) = ((a⊥ ∪ (a⊥ ∪ b)) ∩ (b⊥ ∪ (a⊥ ∪ b))) |
43 | | ax-a3 32 |
. . . . . . . . . . . . 13
((a⊥ ∪ a⊥ ) ∪ b) = (a⊥ ∪ (a⊥ ∪ b)) |
44 | 43 | ax-r1 35 |
. . . . . . . . . . . 12
(a⊥ ∪ (a⊥ ∪ b)) = ((a⊥ ∪ a⊥ ) ∪ b) |
45 | | oridm 110 |
. . . . . . . . . . . . 13
(a⊥ ∪ a⊥ ) = a⊥ |
46 | 45 | ax-r5 38 |
. . . . . . . . . . . 12
((a⊥ ∪ a⊥ ) ∪ b) = (a⊥ ∪ b) |
47 | 44, 46 | ax-r2 36 |
. . . . . . . . . . 11
(a⊥ ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
48 | | or12 80 |
. . . . . . . . . . . 12
(b⊥ ∪ (a⊥ ∪ b)) = (a⊥ ∪ (b⊥ ∪ b)) |
49 | | ax-a2 31 |
. . . . . . . . . . . . . . 15
(b⊥ ∪ b) = (b ∪
b⊥ ) |
50 | | df-t 41 |
. . . . . . . . . . . . . . . 16
1 = (b ∪ b⊥ ) |
51 | 50 | ax-r1 35 |
. . . . . . . . . . . . . . 15
(b ∪ b⊥ ) = 1 |
52 | 49, 51 | ax-r2 36 |
. . . . . . . . . . . . . 14
(b⊥ ∪ b) = 1 |
53 | 52 | lor 70 |
. . . . . . . . . . . . 13
(a⊥ ∪ (b⊥ ∪ b)) = (a⊥ ∪ 1) |
54 | | or1 104 |
. . . . . . . . . . . . 13
(a⊥ ∪ 1) =
1 |
55 | 53, 54 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∪ (b⊥ ∪ b)) = 1 |
56 | 48, 55 | ax-r2 36 |
. . . . . . . . . . 11
(b⊥ ∪ (a⊥ ∪ b)) = 1 |
57 | 47, 56 | 2an 79 |
. . . . . . . . . 10
((a⊥ ∪
(a⊥ ∪ b)) ∩ (b⊥ ∪ (a⊥ ∪ b))) = ((a⊥ ∪ b) ∩ 1) |
58 | | an1 106 |
. . . . . . . . . 10
((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) |
59 | 57, 58 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪
(a⊥ ∪ b)) ∩ (b⊥ ∪ (a⊥ ∪ b))) = (a⊥ ∪ b) |
60 | 42, 59 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
61 | 38, 60 | ax-r2 36 |
. . . . . . 7
(a⊥ ∪
((a⊥ ∩ b⊥ ) ∪ b)) = (a⊥ ∪ b) |
62 | 37, 61 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (a →4 (a →4 b))) = (a⊥ ∪ b) |
63 | | u4lem5n 766 |
. . . . . 6
(a →4 (a →4 b))⊥ = ((a ∪ b) ∩
b⊥ ) |
64 | 62, 63 | 2an 79 |
. . . . 5
((a⊥ ∪
(a →4 (a →4 b))) ∩ (a
→4 (a →4
b))⊥ ) = ((a⊥ ∪ b) ∩ ((a
∪ b) ∩ b⊥ )) |
65 | | id 59 |
. . . . 5
((a⊥ ∪ b) ∩ ((a
∪ b) ∩ b⊥ )) = ((a⊥ ∪ b) ∩ ((a
∪ b) ∩ b⊥ )) |
66 | 64, 65 | ax-r2 36 |
. . . 4
((a⊥ ∪
(a →4 (a →4 b))) ∩ (a
→4 (a →4
b))⊥ ) = ((a⊥ ∪ b) ∩ ((a
∪ b) ∩ b⊥ )) |
67 | 36, 66 | 2or 72 |
. . 3
(((a ∩ (a →4 (a →4 b))) ∪ (a⊥ ∩ (a →4 (a →4 b)))) ∪ ((a⊥ ∪ (a →4 (a →4 b))) ∩ (a
→4 (a →4
b))⊥ )) =
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ ((a
∪ b) ∩ b⊥ ))) |
68 | 39 | comcom7 460 |
. . . . . . 7
(a⊥ ∪ b) C a |
69 | 68, 40 | com2an 484 |
. . . . . 6
(a⊥ ∪ b) C (a
∩ b) |
70 | 39, 41 | com2an 484 |
. . . . . . 7
(a⊥ ∪ b) C (a⊥ ∩ b⊥ ) |
71 | 39, 40 | com2an 484 |
. . . . . . 7
(a⊥ ∪ b) C (a⊥ ∩ b) |
72 | 70, 71 | com2or 483 |
. . . . . 6
(a⊥ ∪ b) C ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
73 | 69, 72 | com2or 483 |
. . . . 5
(a⊥ ∪ b) C ((a
∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
74 | 68, 40 | com2or 483 |
. . . . . 6
(a⊥ ∪ b) C (a
∪ b) |
75 | 74, 41 | com2an 484 |
. . . . 5
(a⊥ ∪ b) C ((a
∪ b) ∩ b⊥ ) |
76 | 73, 75 | fh4 472 |
. . . 4
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ ((a
∪ b) ∩ b⊥ ))) = ((((a ∩ b) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a⊥ ∪ b)) ∩ (((a
∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a
∪ b) ∩ b⊥ ))) |
77 | | lear 161 |
. . . . . . . . 9
(a ∩ b) ≤ b |
78 | | leor 159 |
. . . . . . . . 9
b ≤ (a⊥ ∪ b) |
79 | 77, 78 | letr 137 |
. . . . . . . 8
(a ∩ b) ≤ (a⊥ ∪ b) |
80 | | lea 160 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) ≤ a⊥ |
81 | | lea 160 |
. . . . . . . . . 10
(a⊥ ∩ b) ≤ a⊥ |
82 | 80, 81 | lel2or 170 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) ≤ a⊥ |
83 | | leo 158 |
. . . . . . . . 9
a⊥ ≤ (a⊥ ∪ b) |
84 | 82, 83 | letr 137 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) ≤ (a⊥ ∪ b) |
85 | 79, 84 | lel2or 170 |
. . . . . . 7
((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ≤ (a⊥ ∪ b) |
86 | 85 | df-le2 131 |
. . . . . 6
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
87 | | comor1 461 |
. . . . . . . . . 10
(a ∪ b) C a |
88 | | comor2 462 |
. . . . . . . . . 10
(a ∪ b) C b |
89 | 87, 88 | com2an 484 |
. . . . . . . . 9
(a ∪ b) C (a
∩ b) |
90 | 87 | comcom2 183 |
. . . . . . . . . . 11
(a ∪ b) C a⊥ |
91 | 88 | comcom2 183 |
. . . . . . . . . . 11
(a ∪ b) C b⊥ |
92 | 90, 91 | com2an 484 |
. . . . . . . . . 10
(a ∪ b) C (a⊥ ∩ b⊥ ) |
93 | 90, 88 | com2an 484 |
. . . . . . . . . 10
(a ∪ b) C (a⊥ ∩ b) |
94 | 92, 93 | com2or 483 |
. . . . . . . . 9
(a ∪ b) C ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
95 | 89, 94 | com2or 483 |
. . . . . . . 8
(a ∪ b) C ((a
∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
96 | 95, 91 | fh4 472 |
. . . . . . 7
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a
∪ b) ∩ b⊥ )) = ((((a ∩ b) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a
∪ b)) ∩ (((a ∩ b) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ b⊥ )) |
97 | | or32 82 |
. . . . . . . . . 10
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a
∪ b)) = (((a ∩ b) ∪
(a ∪ b)) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
98 | | ax-a3 32 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (a
∪ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
((a ∪ b) ∪ (a⊥ ∩ b⊥ ))) |
99 | | anor3 90 |
. . . . . . . . . . . . . . . . 17
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
100 | 99 | lor 70 |
. . . . . . . . . . . . . . . 16
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b) ∪
(a ∪ b)⊥ ) |
101 | | df-t 41 |
. . . . . . . . . . . . . . . . 17
1 = ((a ∪ b) ∪ (a
∪ b)⊥
) |
102 | 101 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a ∪ b) ∪ (a
∪ b)⊥ ) =
1 |
103 | 100, 102 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = 1 |
104 | 103 | lor 70 |
. . . . . . . . . . . . . 14
((a ∩ b) ∪ ((a
∪ b) ∪ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
1) |
105 | | or1 104 |
. . . . . . . . . . . . . 14
((a ∩ b) ∪ 1) = 1 |
106 | 104, 105 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ b) ∪ ((a
∪ b) ∪ (a⊥ ∩ b⊥ ))) = 1 |
107 | 98, 106 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a
∪ b)) ∪ (a⊥ ∩ b⊥ )) = 1 |
108 | 107 | ax-r5 38 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a
∪ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) = (1 ∪ (a⊥ ∩ b)) |
109 | | ax-a3 32 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a
∪ b)) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) = (((a ∩
b) ∪ (a ∪ b))
∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
110 | | ax-a2 31 |
. . . . . . . . . . . 12
(1 ∪ (a⊥ ∩
b)) = ((a⊥ ∩ b) ∪ 1) |
111 | | or1 104 |
. . . . . . . . . . . 12
((a⊥ ∩ b) ∪ 1) = 1 |
112 | 110, 111 | ax-r2 36 |
. . . . . . . . . . 11
(1 ∪ (a⊥ ∩
b)) = 1 |
113 | 108, 109,
112 | 3tr2 64 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a
∪ b)) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) = 1 |
114 | 97, 113 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a
∪ b)) = 1 |
115 | | or12 80 |
. . . . . . . . . . 11
((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) = ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
116 | 115 | ax-r5 38 |
. . . . . . . . . 10
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ b⊥ ) = (((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ b⊥ ) |
117 | | lear 161 |
. . . . . . . . . . . . 13
(a⊥ ∩ b⊥ ) ≤ b⊥ |
118 | 117 | df-le2 131 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∪ b⊥ ) = b⊥ |
119 | 118 | ax-r5 38 |
. . . . . . . . . . 11
(((a⊥ ∩
b⊥ ) ∪ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
120 | | or32 82 |
. . . . . . . . . . 11
(((a⊥ ∩
b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ b⊥ ) = (((a⊥ ∩ b⊥ ) ∪ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
121 | | id 59 |
. . . . . . . . . . 11
(b⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b))) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
122 | 119, 120,
121 | 3tr1 63 |
. . . . . . . . . 10
(((a⊥ ∩
b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ b⊥ ) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
123 | 116, 122 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ b⊥ ) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
124 | 114, 123 | 2an 79 |
. . . . . . . 8
((((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a
∪ b)) ∩ (((a ∩ b) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ b⊥ )) = (1 ∩ (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b)))) |
125 | | ancom 74 |
. . . . . . . . 9
(1 ∩ (b⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b)))) = ((b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) ∩ 1) |
126 | | an1 106 |
. . . . . . . . 9
((b⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b))) ∩ 1) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
127 | 125, 126 | ax-r2 36 |
. . . . . . . 8
(1 ∩ (b⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b)))) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
128 | 124, 127 | ax-r2 36 |
. . . . . . 7
((((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a
∪ b)) ∩ (((a ∩ b) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ b⊥ )) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
129 | 96, 128 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a
∪ b) ∩ b⊥ )) = (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
130 | 86, 129 | 2an 79 |
. . . . 5
((((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a⊥ ∪ b)) ∩ (((a
∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a
∪ b) ∩ b⊥ ))) = ((a⊥ ∪ b) ∩ (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b)))) |
131 | | comorr2 463 |
. . . . . . . 8
b C (a⊥ ∪ b) |
132 | 131 | comcom3 454 |
. . . . . . 7
b⊥ C
(a⊥ ∪ b) |
133 | | comanr2 465 |
. . . . . . . . 9
b C (a ∩ b) |
134 | | comanr2 465 |
. . . . . . . . 9
b C (a⊥ ∩ b) |
135 | 133, 134 | com2or 483 |
. . . . . . . 8
b C ((a ∩ b) ∪
(a⊥ ∩ b)) |
136 | 135 | comcom3 454 |
. . . . . . 7
b⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
137 | 132, 136 | fh2 470 |
. . . . . 6
((a⊥ ∪ b) ∩ (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b)))) = (((a⊥ ∪ b) ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b)))) |
138 | | ax-a2 31 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) = (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
139 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∪ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b))) = (((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∪ b)) |
140 | | lear 161 |
. . . . . . . . . . . 12
(a⊥ ∩ b) ≤ b |
141 | 77, 140 | lel2or 170 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ b |
142 | 141, 78 | letr 137 |
. . . . . . . . . 10
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ (a⊥ ∪ b) |
143 | 142 | df2le2 136 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∪ b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
144 | 139, 143 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b))) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
145 | 144 | lor 70 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b)))) = (((a⊥ ∪ b) ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
146 | | df-i4 47 |
. . . . . . 7
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
147 | 138, 145,
146 | 3tr1 63 |
. . . . . 6
(((a⊥ ∪
b) ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b)))) = (a
→4 b) |
148 | 137, 147 | ax-r2 36 |
. . . . 5
((a⊥ ∪ b) ∩ (b⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b)))) = (a
→4 b) |
149 | 130, 148 | ax-r2 36 |
. . . 4
((((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ (a⊥ ∪ b)) ∩ (((a
∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a
∪ b) ∩ b⊥ ))) = (a →4 b) |
150 | 76, 149 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ ((a
∪ b) ∩ b⊥ ))) = (a →4 b) |
151 | 67, 150 | ax-r2 36 |
. 2
(((a ∩ (a →4 (a →4 b))) ∪ (a⊥ ∩ (a →4 (a →4 b)))) ∪ ((a⊥ ∪ (a →4 (a →4 b))) ∩ (a
→4 (a →4
b))⊥ )) = (a →4 b) |
152 | 1, 151 | ax-r2 36 |
1
(a →4 (a →4 (a →4 b))) = (a
→4 b) |