Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u4lem5n | GIF version |
Description: Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.) |
Ref | Expression |
---|---|
u4lem5n | (a →4 (a →4 b))⊥ = ((a ∪ b) ∩ b⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | u4lem5 764 | . . . 4 (a →4 (a →4 b)) = ((a⊥ ∩ b⊥ ) ∪ b) | |
2 | anor3 90 | . . . . 5 (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ | |
3 | 2 | ax-r5 38 | . . . 4 ((a⊥ ∩ b⊥ ) ∪ b) = ((a ∪ b)⊥ ∪ b) |
4 | 1, 3 | ax-r2 36 | . . 3 (a →4 (a →4 b)) = ((a ∪ b)⊥ ∪ b) |
5 | oran2 92 | . . 3 ((a ∪ b)⊥ ∪ b) = ((a ∪ b) ∩ b⊥ )⊥ | |
6 | 4, 5 | ax-r2 36 | . 2 (a →4 (a →4 b)) = ((a ∪ b) ∩ b⊥ )⊥ |
7 | 6 | con2 67 | 1 (a →4 (a →4 b))⊥ = ((a ∪ b) ∩ b⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u4lem6 768 |
Copyright terms: Public domain | W3C validator |