Proof of Theorem u3lem8
| Step | Hyp | Ref
| Expression |
| 1 | | comi31 508 |
. . . 4
a C (a →3 (a⊥ →3 b)) |
| 2 | 1 | comcom3 454 |
. . 3
a⊥ C
(a →3 (a⊥ →3 b)) |
| 3 | 2 | u3lemc4 703 |
. 2
(a⊥ →3
(a →3 (a⊥ →3 b))) = (a⊥ ⊥ ∪
(a →3 (a⊥ →3 b))) |
| 4 | | ax-a1 30 |
. . . . 5
a = a⊥
⊥ |
| 5 | 4 | ax-r1 35 |
. . . 4
a⊥
⊥ = a |
| 6 | | u3lem7 774 |
. . . 4
(a →3 (a⊥ →3 b)) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
| 7 | 5, 6 | 2or 72 |
. . 3
(a⊥
⊥ ∪ (a →3
(a⊥ →3
b))) = (a ∪ (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ )))) |
| 8 | | ax-a3 32 |
. . . . 5
((a ∪ a⊥ ) ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) = (a ∪ (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ )))) |
| 9 | 8 | ax-r1 35 |
. . . 4
(a ∪ (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ )))) = ((a ∪ a⊥ ) ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
| 10 | | ax-a2 31 |
. . . . 5
((a ∪ a⊥ ) ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ (a ∪ a⊥ )) |
| 11 | | df-t 41 |
. . . . . . . 8
1 = (a ∪ a⊥ ) |
| 12 | 11 | ax-r1 35 |
. . . . . . 7
(a ∪ a⊥ ) = 1 |
| 13 | 12 | lor 70 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a ∪ a⊥ )) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ 1) |
| 14 | | or1 104 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ 1) =
1 |
| 15 | 13, 14 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a ∪ a⊥ )) = 1 |
| 16 | 10, 15 | ax-r2 36 |
. . . 4
((a ∪ a⊥ ) ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) = 1 |
| 17 | 9, 16 | ax-r2 36 |
. . 3
(a ∪ (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ )))) = 1 |
| 18 | 7, 17 | ax-r2 36 |
. 2
(a⊥
⊥ ∪ (a →3
(a⊥ →3
b))) = 1 |
| 19 | 3, 18 | ax-r2 36 |
1
(a⊥ →3
(a →3 (a⊥ →3 b))) = 1 |