QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u3lemnana GIF version

Theorem u3lemnana 647
Description: Lemma for Kalmbach implication study. (Contributed by NM, 16-Dec-1997.)
Assertion
Ref Expression
u3lemnana ((a3 b)a ) = (a ∩ ((ab) ∩ (ab )))

Proof of Theorem u3lemnana
StepHypRef Expression
1 u3lemoa 622 . . . 4 ((a3 b) ∪ a) = (a ∪ ((ab) ∪ (ab )))
2 ax-a2 31 . . . . . 6 ((ab) ∪ (ab )) = ((ab ) ∪ (ab))
3 anor3 90 . . . . . . . 8 (ab ) = (ab)
4 anor2 89 . . . . . . . 8 (ab) = (ab )
53, 42or 72 . . . . . . 7 ((ab ) ∪ (ab)) = ((ab) ∪ (ab ) )
6 oran3 93 . . . . . . 7 ((ab) ∪ (ab ) ) = ((ab) ∩ (ab ))
75, 6ax-r2 36 . . . . . 6 ((ab ) ∪ (ab)) = ((ab) ∩ (ab ))
82, 7ax-r2 36 . . . . 5 ((ab) ∪ (ab )) = ((ab) ∩ (ab ))
98lor 70 . . . 4 (a ∪ ((ab) ∪ (ab ))) = (a ∪ ((ab) ∩ (ab )) )
101, 9ax-r2 36 . . 3 ((a3 b) ∪ a) = (a ∪ ((ab) ∩ (ab )) )
11 oran 87 . . 3 ((a3 b) ∪ a) = ((a3 b)a )
12 oran1 91 . . 3 (a ∪ ((ab) ∩ (ab )) ) = (a ∩ ((ab) ∩ (ab )))
1310, 11, 123tr2 64 . 2 ((a3 b)a ) = (a ∩ ((ab) ∩ (ab )))
1413con1 66 1 ((a3 b)a ) = (a ∩ ((ab) ∩ (ab )))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i3 46  df-le1 130  df-le2 131
This theorem is referenced by:  u3lem13a  789  u3lem13b  790
  Copyright terms: Public domain W3C validator