Proof of Theorem u4lem1n
| Step | Hyp | Ref
| Expression |
| 1 | | oran1 91 |
. . . . 5
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) = (((a ∩ b) ∪
(a ∩ b⊥ ))⊥ ∩
a)⊥ |
| 2 | | df-a 40 |
. . . . . . . . . . 11
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 3 | | anor1 88 |
. . . . . . . . . . 11
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 4 | 2, 3 | 2or 72 |
. . . . . . . . . 10
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ ) |
| 5 | 4 | ax-r4 37 |
. . . . . . . . 9
((a ∩ b) ∪ (a
∩ b⊥
))⊥ = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥
)⊥ |
| 6 | | df-a 40 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥
)⊥ |
| 7 | 6 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ )⊥ =
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) |
| 8 | 5, 7 | ax-r2 36 |
. . . . . . . 8
((a ∩ b) ∪ (a
∩ b⊥
))⊥ = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) |
| 9 | | ancom 74 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) |
| 10 | 8, 9 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ b⊥
))⊥ = ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) |
| 11 | 10 | ran 78 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ b⊥
))⊥ ∩ a) = (((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a) |
| 12 | 11 | ax-r4 37 |
. . . . 5
(((a ∩ b) ∪ (a
∩ b⊥
))⊥ ∩ a)⊥ = (((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a)⊥ |
| 13 | 1, 12 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) = (((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a)⊥ |
| 14 | | ancom 74 |
. . . . 5
((a ∪ b) ∩ (a
∪ b⊥ )) = ((a ∪ b⊥ ) ∩ (a ∪ b)) |
| 15 | | df-a 40 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) =
((a ∪ b⊥ )⊥ ∪
(a ∪ b)⊥
)⊥ |
| 16 | | anor2 89 |
. . . . . . . . 9
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
| 17 | | anor3 90 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 18 | 16, 17 | 2or 72 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b⊥ )⊥ ∪
(a ∪ b)⊥ ) |
| 19 | 18 | ax-r4 37 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ =
((a ∪ b⊥ )⊥ ∪
(a ∪ b)⊥
)⊥ |
| 20 | 19 | ax-r1 35 |
. . . . . 6
((a ∪ b⊥ )⊥ ∪
(a ∪ b)⊥ )⊥ =
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥
))⊥ |
| 21 | 15, 20 | ax-r2 36 |
. . . . 5
((a ∪ b⊥ ) ∩ (a ∪ b)) =
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥
))⊥ |
| 22 | 14, 21 | ax-r2 36 |
. . . 4
((a ∪ b) ∩ (a
∪ b⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥
))⊥ |
| 23 | 13, 22 | 2an 79 |
. . 3
((((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) = ((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a)⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
) |
| 24 | 23 | ax-r4 37 |
. 2
((((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ )))⊥ =
((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a)⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
)⊥ |
| 25 | | u4lem1 737 |
. . 3
((a →4 b) →4 a) = ((((a ∩
b) ∪ (a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
| 26 | 25 | ax-r4 37 |
. 2
((a →4 b) →4 a)⊥ = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥
)))⊥ |
| 27 | | oran 87 |
. 2
((((a⊥ ∪
b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = ((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a)⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
)⊥ |
| 28 | 24, 26, 27 | 3tr1 63 |
1
((a →4 b) →4 a)⊥ = ((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |