Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u4lemc1 | GIF version |
Description: Commutation theorem for non-tollens implication. (Contributed by NM, 14-Dec-1997.) |
Ref | Expression |
---|---|
u4lemc1 | b C (a →4 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comanr2 465 | . . . 4 b C (a ∩ b) | |
2 | comanr2 465 | . . . 4 b C (a⊥ ∩ b) | |
3 | 1, 2 | com2or 483 | . . 3 b C ((a ∩ b) ∪ (a⊥ ∩ b)) |
4 | comorr2 463 | . . . 4 b C (a⊥ ∪ b) | |
5 | comid 187 | . . . . 5 b C b | |
6 | 5 | comcom2 183 | . . . 4 b C b⊥ |
7 | 4, 6 | com2an 484 | . . 3 b C ((a⊥ ∪ b) ∩ b⊥ ) |
8 | 3, 7 | com2or 483 | . 2 b C (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
9 | df-i4 47 | . . 3 (a →4 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) | |
10 | 9 | ax-r1 35 | . 2 (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (a →4 b) |
11 | 8, 10 | cbtr 182 | 1 b C (a →4 b) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u4lemc3 694 u4lem2 747 u4lem3 752 u24lem 770 |
Copyright terms: Public domain | W3C validator |