Proof of Theorem ud4lem1
| Step | Hyp | Ref
| Expression |
| 1 | | df-i4 47 |
. 2
((a →4 b) →4 (b →4 a)) = ((((a
→4 b) ∩ (b →4 a)) ∪ ((a
→4 b)⊥
∩ (b →4 a))) ∪ (((a
→4 b)⊥
∪ (b →4 a)) ∩ (b
→4 a)⊥
)) |
| 2 | | ud4lem1a 577 |
. . . . 5
((a →4 b) ∩ (b
→4 a)) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 3 | | ud4lem1b 578 |
. . . . 5
((a →4 b)⊥ ∩ (b →4 a)) = (a ∩
b⊥ ) |
| 4 | 2, 3 | 2or 72 |
. . . 4
(((a →4 b) ∩ (b
→4 a)) ∪ ((a →4 b)⊥ ∩ (b →4 a))) = (((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 5 | | ud4lem1d 580 |
. . . 4
(((a →4 b)⊥ ∪ (b →4 a)) ∩ (b
→4 a)⊥ ) =
(((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ a) |
| 6 | 4, 5 | 2or 72 |
. . 3
((((a →4 b) ∩ (b
→4 a)) ∪ ((a →4 b)⊥ ∩ (b →4 a))) ∪ (((a
→4 b)⊥
∪ (b →4 a)) ∩ (b
→4 a)⊥ ))
= ((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ a)) |
| 7 | | ancom 74 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b)) ∩ a) =
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) |
| 8 | 7 | lor 70 |
. . . . 5
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ a)) =
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) |
| 9 | | coman1 185 |
. . . . . . . . . . . 12
(a ∩ b) C a |
| 10 | 9 | comcom 453 |
. . . . . . . . . . 11
a C (a ∩ b) |
| 11 | 10 | comcom3 454 |
. . . . . . . . . 10
a⊥ C
(a ∩ b) |
| 12 | | coman1 185 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) C a⊥ |
| 13 | 12 | comcom 453 |
. . . . . . . . . 10
a⊥ C
(a⊥ ∩ b⊥ ) |
| 14 | 11, 13 | com2or 483 |
. . . . . . . . 9
a⊥ C
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 15 | | coman1 185 |
. . . . . . . . . . 11
(a ∩ b⊥ ) C a |
| 16 | 15 | comcom 453 |
. . . . . . . . . 10
a C (a ∩ b⊥ ) |
| 17 | 16 | comcom3 454 |
. . . . . . . . 9
a⊥ C
(a ∩ b⊥ ) |
| 18 | 14, 17 | com2or 483 |
. . . . . . . 8
a⊥ C
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 19 | 18 | comcom2 183 |
. . . . . . 7
a⊥ C
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥
))⊥ |
| 20 | 19 | comcom5 458 |
. . . . . 6
a C (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 21 | | comorr 184 |
. . . . . . . . 9
a⊥ C
(a⊥ ∪ b⊥ ) |
| 22 | | comorr 184 |
. . . . . . . . 9
a⊥ C
(a⊥ ∪ b) |
| 23 | 21, 22 | com2an 484 |
. . . . . . . 8
a⊥ C
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) |
| 24 | 23 | comcom2 183 |
. . . . . . 7
a⊥ C
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))⊥ |
| 25 | 24 | comcom5 458 |
. . . . . 6
a C ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) |
| 26 | 20, 25 | fh4 472 |
. . . . 5
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) = (((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ a) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) |
| 27 | 8, 26 | ax-r2 36 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ a)) =
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ a) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) |
| 28 | | ax-a3 32 |
. . . . . . . 8
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ a) = (((a ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ a)) |
| 29 | | or4 84 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ a)) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∪ a)) |
| 30 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ b) ≤ a |
| 31 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) ≤ a |
| 32 | 30, 31 | lel2or 170 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a
∩ b⊥ )) ≤ a |
| 33 | | leor 159 |
. . . . . . . . . . 11
a ≤ ((a⊥ ∩ b⊥ ) ∪ a) |
| 34 | 32, 33 | letr 137 |
. . . . . . . . . 10
((a ∩ b) ∪ (a
∩ b⊥ )) ≤
((a⊥ ∩ b⊥ ) ∪ a) |
| 35 | 34 | df-le2 131 |
. . . . . . . . 9
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ a)) = ((a⊥ ∩ b⊥ ) ∪ a) |
| 36 | 29, 35 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ a)) = ((a⊥ ∩ b⊥ ) ∪ a) |
| 37 | 28, 36 | ax-r2 36 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ a) = ((a⊥ ∩ b⊥ ) ∪ a) |
| 38 | | ax-a2 31 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ a) = (a ∪
(a⊥ ∩ b⊥ )) |
| 39 | 37, 38 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ a) = (a ∪
(a⊥ ∩ b⊥ )) |
| 40 | 9 | comcom2 183 |
. . . . . . . . . . . . 13
(a ∩ b) C a⊥ |
| 41 | | coman2 186 |
. . . . . . . . . . . . . 14
(a ∩ b) C b |
| 42 | 41 | comcom2 183 |
. . . . . . . . . . . . 13
(a ∩ b) C b⊥ |
| 43 | 40, 42 | com2or 483 |
. . . . . . . . . . . 12
(a ∩ b) C (a⊥ ∪ b⊥ ) |
| 44 | 43 | comcom 453 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ ) C (a ∩ b) |
| 45 | | comor1 461 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ ) C a⊥ |
| 46 | | comor2 462 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ ) C b⊥ |
| 47 | 45, 46 | com2an 484 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ ) C (a⊥ ∩ b⊥ ) |
| 48 | 44, 47 | com2or 483 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 49 | 45 | comcom3 454 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ )⊥ C
a⊥ |
| 50 | 49 | comcom5 458 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ ) C a |
| 51 | 50, 46 | com2an 484 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C (a ∩ b⊥ ) |
| 52 | 48, 51 | com2or 483 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) |
| 53 | 46 | comcom3 454 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ )⊥ C
b⊥ |
| 54 | 53 | comcom5 458 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C b |
| 55 | 45, 54 | com2or 483 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (a⊥ ∪ b) |
| 56 | 52, 55 | fh4 472 |
. . . . . . . 8
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = (((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b))) |
| 57 | | or32 82 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∪ (a ∩ b⊥ )) |
| 58 | | or32 82 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = (((a ∩ b) ∪
(a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) |
| 59 | | df-a 40 |
. . . . . . . . . . . . . . . . . . 19
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 60 | 59 | con2 67 |
. . . . . . . . . . . . . . . . . 18
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
| 61 | 60 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
| 62 | 61 | lor 70 |
. . . . . . . . . . . . . . . 16
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = ((a ∩ b) ∪
(a ∩ b)⊥ ) |
| 63 | | df-t 41 |
. . . . . . . . . . . . . . . . 17
1 = ((a ∩ b) ∪ (a
∩ b)⊥
) |
| 64 | 63 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a ∩ b) ∪ (a
∩ b)⊥ ) =
1 |
| 65 | 62, 64 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 66 | 65 | ax-r5 38 |
. . . . . . . . . . . . . 14
(((a ∩ b) ∪ (a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = (1 ∪ (a⊥ ∩ b⊥ )) |
| 67 | | ax-a2 31 |
. . . . . . . . . . . . . . 15
(1 ∪ (a⊥ ∩
b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 1) |
| 68 | | or1 104 |
. . . . . . . . . . . . . . 15
((a⊥ ∩ b⊥ ) ∪ 1) = 1 |
| 69 | 67, 68 | ax-r2 36 |
. . . . . . . . . . . . . 14
(1 ∪ (a⊥ ∩
b⊥ )) = 1 |
| 70 | 66, 69 | ax-r2 36 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (a⊥ ∪ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = 1 |
| 71 | 58, 70 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 72 | 71 | ax-r5 38 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∪ (a ∩ b⊥ )) = (1 ∪ (a ∩ b⊥ )) |
| 73 | | ax-a2 31 |
. . . . . . . . . . . 12
(1 ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ 1) |
| 74 | | or1 104 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∪ 1) = 1 |
| 75 | 73, 74 | ax-r2 36 |
. . . . . . . . . . 11
(1 ∪ (a ∩ b⊥ )) = 1 |
| 76 | 72, 75 | ax-r2 36 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∪ (a ∩ b⊥ )) = 1 |
| 77 | 57, 76 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 78 | | ax-a3 32 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b)) = (((a ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∪ b))) |
| 79 | | anor1 88 |
. . . . . . . . . . . . . 14
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 80 | 79 | lor 70 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∪ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∪ (a⊥ ∪ b)⊥ ) |
| 81 | | ax-a2 31 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∪ (a
∩ b⊥
)) |
| 82 | | df-t 41 |
. . . . . . . . . . . . 13
1 = ((a⊥ ∪
b) ∪ (a⊥ ∪ b)⊥ ) |
| 83 | 80, 81, 82 | 3tr1 63 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = 1 |
| 84 | 83 | lor 70 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∪ b))) = (((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 1) |
| 85 | | or1 104 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 1) = 1 |
| 86 | 84, 85 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∪ b))) = 1 |
| 87 | 78, 86 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b)) = 1 |
| 88 | 77, 87 | 2an 79 |
. . . . . . . 8
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b⊥ )) ∩ ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ b))) = (1 ∩ 1) |
| 89 | 56, 88 | ax-r2 36 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = (1 ∩ 1) |
| 90 | | an1 106 |
. . . . . . 7
(1 ∩ 1) = 1 |
| 91 | 89, 90 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = 1 |
| 92 | 39, 91 | 2an 79 |
. . . . 5
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ a) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) = ((a
∪ (a⊥ ∩ b⊥ )) ∩ 1) |
| 93 | | an1 106 |
. . . . 5
((a ∪ (a⊥ ∩ b⊥ )) ∩ 1) = (a ∪ (a⊥ ∩ b⊥ )) |
| 94 | 92, 93 | ax-r2 36 |
. . . 4
(((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ a) ∩ ((((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) = (a ∪
(a⊥ ∩ b⊥ )) |
| 95 | 27, 94 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b⊥ )) ∪ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ a)) =
(a ∪ (a⊥ ∩ b⊥ )) |
| 96 | 6, 95 | ax-r2 36 |
. 2
((((a →4 b) ∩ (b
→4 a)) ∪ ((a →4 b)⊥ ∩ (b →4 a))) ∪ (((a
→4 b)⊥
∪ (b →4 a)) ∩ (b
→4 a)⊥ ))
= (a ∪ (a⊥ ∩ b⊥ )) |
| 97 | 1, 96 | ax-r2 36 |
1
((a →4 b) →4 (b →4 a)) = (a ∪
(a⊥ ∩ b⊥ )) |