Proof of Theorem ud5lem0c
Step | Hyp | Ref
| Expression |
1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
2 | | oran 87 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ b))⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ |
3 | | oran 87 |
. . . . . . . 8
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a ∩
b)⊥ ∩ (a⊥ ∩ b)⊥
)⊥ |
4 | | df-a 40 |
. . . . . . . . . . 11
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
5 | 4 | con2 67 |
. . . . . . . . . 10
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
6 | | anor2 89 |
. . . . . . . . . . 11
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
7 | 6 | con2 67 |
. . . . . . . . . 10
(a⊥ ∩ b)⊥ = (a ∪ b⊥ ) |
8 | 5, 7 | 2an 79 |
. . . . . . . . 9
((a ∩ b)⊥ ∩ (a⊥ ∩ b)⊥ ) = ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
9 | 8 | ax-r4 37 |
. . . . . . . 8
((a ∩ b)⊥ ∩ (a⊥ ∩ b)⊥ )⊥ =
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥
))⊥ |
10 | 3, 9 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥
))⊥ |
11 | 10 | con2 67 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b))⊥ = ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
12 | | oran 87 |
. . . . . . 7
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
13 | 12 | ax-r1 35 |
. . . . . 6
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
14 | 11, 13 | 2an 79 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b))⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
(((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
15 | 14 | ax-r4 37 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b))⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))⊥ |
16 | 2, 15 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))⊥ |
17 | 1, 16 | ax-r2 36 |
. 2
(a →5 b) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))⊥ |
18 | 17 | con2 67 |
1
(a →5 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |