Proof of Theorem ud5lem3b
Step | Hyp | Ref
| Expression |
1 | | ud5lem0c 281 |
. . 3
(a →5 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
2 | 1 | ran 78 |
. 2
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a ∪ (a⊥ ∩ b))) |
3 | | comorr 184 |
. . . . . . 7
a⊥ C
(a⊥ ∪ b⊥ ) |
4 | 3 | comcom6 459 |
. . . . . 6
a C (a⊥ ∪ b⊥ ) |
5 | | comorr 184 |
. . . . . 6
a C (a ∪ b⊥ ) |
6 | 4, 5 | com2an 484 |
. . . . 5
a C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
7 | | comorr 184 |
. . . . 5
a C (a ∪ b) |
8 | 6, 7 | com2an 484 |
. . . 4
a C (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
9 | | comanr1 464 |
. . . . 5
a⊥ C
(a⊥ ∩ b) |
10 | 9 | comcom6 459 |
. . . 4
a C (a⊥ ∩ b) |
11 | 8, 10 | fh2 470 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a ∪ (a⊥ ∩ b))) = (((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ a) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ b))) |
12 | | anass 76 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ a) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∪ b) ∩
a)) |
13 | | ancom 74 |
. . . . . . . . 9
((a ∪ b) ∩ a) =
(a ∩ (a ∪ b)) |
14 | | anabs 121 |
. . . . . . . . 9
(a ∩ (a ∪ b)) =
a |
15 | 13, 14 | ax-r2 36 |
. . . . . . . 8
((a ∪ b) ∩ a) =
a |
16 | 15 | lan 77 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∪ b) ∩
a)) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ a) |
17 | | anass 76 |
. . . . . . . 8
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ a) = ((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ a)) |
18 | | ancom 74 |
. . . . . . . . . . 11
((a ∪ b⊥ ) ∩ a) = (a ∩
(a ∪ b⊥ )) |
19 | | anabs 121 |
. . . . . . . . . . 11
(a ∩ (a ∪ b⊥ )) = a |
20 | 18, 19 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ b⊥ ) ∩ a) = a |
21 | 20 | lan 77 |
. . . . . . . . 9
((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ a)) = ((a⊥ ∪ b⊥ ) ∩ a) |
22 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∪ b⊥ ) ∩ a) = (a ∩
(a⊥ ∪ b⊥ )) |
23 | 21, 22 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ a)) = (a ∩
(a⊥ ∪ b⊥ )) |
24 | 17, 23 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ a) = (a ∩
(a⊥ ∪ b⊥ )) |
25 | 16, 24 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∪ b) ∩
a)) = (a ∩ (a⊥ ∪ b⊥ )) |
26 | 12, 25 | ax-r2 36 |
. . . . 5
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ a) = (a ∩ (a⊥ ∪ b⊥ )) |
27 | | an32 83 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ b)) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ b)) ∩ (a
∪ b)) |
28 | | anass 76 |
. . . . . . . . 9
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ b)) = ((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∩ b))) |
29 | | anor2 89 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
30 | 29 | lan 77 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∩ (a⊥ ∩ b)) = ((a ∪
b⊥ ) ∩ (a ∪ b⊥ )⊥
) |
31 | | dff 101 |
. . . . . . . . . . . . 13
0 = ((a ∪ b⊥ ) ∩ (a ∪ b⊥ )⊥
) |
32 | 31 | ax-r1 35 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∩ (a ∪ b⊥ )⊥ ) =
0 |
33 | 30, 32 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b⊥ ) ∩ (a⊥ ∩ b)) = 0 |
34 | 33 | lan 77 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∩ b))) = ((a⊥ ∪ b⊥ ) ∩ 0) |
35 | | an0 108 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ 0) = 0 |
36 | 34, 35 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∩ b))) = 0 |
37 | 28, 36 | ax-r2 36 |
. . . . . . . 8
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ b)) = 0 |
38 | 37 | ran 78 |
. . . . . . 7
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ b)) ∩ (a
∪ b)) = (0 ∩ (a ∪ b)) |
39 | | an0r 109 |
. . . . . . 7
(0 ∩ (a ∪ b)) = 0 |
40 | 38, 39 | ax-r2 36 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ b)) ∩ (a
∪ b)) = 0 |
41 | 27, 40 | ax-r2 36 |
. . . . 5
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ b)) = 0 |
42 | 26, 41 | 2or 72 |
. . . 4
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ a) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ b))) = ((a ∩
(a⊥ ∪ b⊥ )) ∪ 0) |
43 | | or0 102 |
. . . 4
((a ∩ (a⊥ ∪ b⊥ )) ∪ 0) = (a ∩ (a⊥ ∪ b⊥ )) |
44 | 42, 43 | ax-r2 36 |
. . 3
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ a) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ b))) = (a ∩
(a⊥ ∪ b⊥ )) |
45 | 11, 44 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a ∪ (a⊥ ∩ b))) = (a ∩
(a⊥ ∪ b⊥ )) |
46 | 2, 45 | ax-r2 36 |
1
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a ∩
(a⊥ ∪ b⊥ )) |