Proof of Theorem ud5lem3c
Step | Hyp | Ref
| Expression |
1 | | ud5lem0c 281 |
. . 3
(a →5 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
2 | | oran 87 |
. . . . 5
(a ∪ (a⊥ ∩ b)) = (a⊥ ∩ (a⊥ ∩ b)⊥
)⊥ |
3 | 2 | con2 67 |
. . . 4
(a ∪ (a⊥ ∩ b))⊥ = (a⊥ ∩ (a⊥ ∩ b)⊥ ) |
4 | | anor2 89 |
. . . . . 6
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
5 | 4 | con2 67 |
. . . . 5
(a⊥ ∩ b)⊥ = (a ∪ b⊥ ) |
6 | 5 | lan 77 |
. . . 4
(a⊥ ∩ (a⊥ ∩ b)⊥ ) = (a⊥ ∩ (a ∪ b⊥ )) |
7 | 3, 6 | ax-r2 36 |
. . 3
(a ∪ (a⊥ ∩ b))⊥ = (a⊥ ∩ (a ∪ b⊥ )) |
8 | 1, 7 | 2an 79 |
. 2
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))⊥ ) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ (a ∪ b⊥ ))) |
9 | | an32 83 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ (a ∪ b⊥ ))) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ (a ∪ b⊥ ))) ∩ (a ∪ b)) |
10 | | an4 86 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ (a ∪ b⊥ ))) = (((a⊥ ∪ b⊥ ) ∩ a⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ))) |
11 | | ancom 74 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ a⊥ ) = (a⊥ ∩ (a⊥ ∪ b⊥ )) |
12 | | anabs 121 |
. . . . . . . . . 10
(a⊥ ∩ (a⊥ ∪ b⊥ )) = a⊥ |
13 | 11, 12 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪ b⊥ ) ∩ a⊥ ) = a⊥ |
14 | | anidm 111 |
. . . . . . . . 9
((a ∪ b⊥ ) ∩ (a ∪ b⊥ )) = (a ∪ b⊥ ) |
15 | 13, 14 | 2an 79 |
. . . . . . . 8
(((a⊥ ∪
b⊥ ) ∩ a⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ))) = (a⊥ ∩ (a ∪ b⊥ )) |
16 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩ (a ∪ b⊥ )) = ((a ∪ b⊥ ) ∩ a⊥ ) |
17 | 15, 16 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ a⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ))) = ((a ∪ b⊥ ) ∩ a⊥ ) |
18 | 10, 17 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ (a ∪ b⊥ ))) = ((a ∪ b⊥ ) ∩ a⊥ ) |
19 | 18 | ran 78 |
. . . . 5
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ (a ∪ b⊥ ))) ∩ (a ∪ b)) =
(((a ∪ b⊥ ) ∩ a⊥ ) ∩ (a ∪ b)) |
20 | | ancom 74 |
. . . . 5
(((a ∪ b⊥ ) ∩ a⊥ ) ∩ (a ∪ b)) =
((a ∪ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) |
21 | 19, 20 | ax-r2 36 |
. . . 4
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ (a ∪ b⊥ ))) ∩ (a ∪ b)) =
((a ∪ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) |
22 | | anass 76 |
. . . . 5
(((a ∪ b) ∩ (a
∪ b⊥ )) ∩ a⊥ ) = ((a ∪ b) ∩
((a ∪ b⊥ ) ∩ a⊥ )) |
23 | 22 | ax-r1 35 |
. . . 4
((a ∪ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ) |
24 | 21, 23 | ax-r2 36 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a⊥ ∩ (a ∪ b⊥ ))) ∩ (a ∪ b)) =
(((a ∪ b) ∩ (a
∪ b⊥ )) ∩ a⊥ ) |
25 | 9, 24 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (a⊥ ∩ (a ∪ b⊥ ))) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ) |
26 | 8, 25 | ax-r2 36 |
1
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))⊥ ) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ) |