QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ud5lem3c GIF version

Theorem ud5lem3c 593
Description: Lemma for unified disjunction. (Contributed by NM, 26-Nov-1997.)
Assertion
Ref Expression
ud5lem3c ((a5 b) ∩ (a ∪ (ab)) ) = (((ab) ∩ (ab )) ∩ a )

Proof of Theorem ud5lem3c
StepHypRef Expression
1 ud5lem0c 281 . . 3 (a5 b) = (((ab ) ∩ (ab )) ∩ (ab))
2 oran 87 . . . . 5 (a ∪ (ab)) = (a ∩ (ab) )
32con2 67 . . . 4 (a ∪ (ab)) = (a ∩ (ab) )
4 anor2 89 . . . . . 6 (ab) = (ab )
54con2 67 . . . . 5 (ab) = (ab )
65lan 77 . . . 4 (a ∩ (ab) ) = (a ∩ (ab ))
73, 6ax-r2 36 . . 3 (a ∪ (ab)) = (a ∩ (ab ))
81, 72an 79 . 2 ((a5 b) ∩ (a ∪ (ab)) ) = ((((ab ) ∩ (ab )) ∩ (ab)) ∩ (a ∩ (ab )))
9 an32 83 . . 3 ((((ab ) ∩ (ab )) ∩ (ab)) ∩ (a ∩ (ab ))) = ((((ab ) ∩ (ab )) ∩ (a ∩ (ab ))) ∩ (ab))
10 an4 86 . . . . . . 7 (((ab ) ∩ (ab )) ∩ (a ∩ (ab ))) = (((ab ) ∩ a ) ∩ ((ab ) ∩ (ab )))
11 ancom 74 . . . . . . . . . 10 ((ab ) ∩ a ) = (a ∩ (ab ))
12 anabs 121 . . . . . . . . . 10 (a ∩ (ab )) = a
1311, 12ax-r2 36 . . . . . . . . 9 ((ab ) ∩ a ) = a
14 anidm 111 . . . . . . . . 9 ((ab ) ∩ (ab )) = (ab )
1513, 142an 79 . . . . . . . 8 (((ab ) ∩ a ) ∩ ((ab ) ∩ (ab ))) = (a ∩ (ab ))
16 ancom 74 . . . . . . . 8 (a ∩ (ab )) = ((ab ) ∩ a )
1715, 16ax-r2 36 . . . . . . 7 (((ab ) ∩ a ) ∩ ((ab ) ∩ (ab ))) = ((ab ) ∩ a )
1810, 17ax-r2 36 . . . . . 6 (((ab ) ∩ (ab )) ∩ (a ∩ (ab ))) = ((ab ) ∩ a )
1918ran 78 . . . . 5 ((((ab ) ∩ (ab )) ∩ (a ∩ (ab ))) ∩ (ab)) = (((ab ) ∩ a ) ∩ (ab))
20 ancom 74 . . . . 5 (((ab ) ∩ a ) ∩ (ab)) = ((ab) ∩ ((ab ) ∩ a ))
2119, 20ax-r2 36 . . . 4 ((((ab ) ∩ (ab )) ∩ (a ∩ (ab ))) ∩ (ab)) = ((ab) ∩ ((ab ) ∩ a ))
22 anass 76 . . . . 5 (((ab) ∩ (ab )) ∩ a ) = ((ab) ∩ ((ab ) ∩ a ))
2322ax-r1 35 . . . 4 ((ab) ∩ ((ab ) ∩ a )) = (((ab) ∩ (ab )) ∩ a )
2421, 23ax-r2 36 . . 3 ((((ab ) ∩ (ab )) ∩ (a ∩ (ab ))) ∩ (ab)) = (((ab) ∩ (ab )) ∩ a )
259, 24ax-r2 36 . 2 ((((ab ) ∩ (ab )) ∩ (ab)) ∩ (a ∩ (ab ))) = (((ab) ∩ (ab )) ∩ a )
268, 25ax-r2 36 1 ((a5 b) ∩ (a ∪ (ab)) ) = (((ab) ∩ (ab )) ∩ a )
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  5 wi5 16
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i5 48
This theorem is referenced by:  ud5lem3  594
  Copyright terms: Public domain W3C validator