Proof of Theorem ud5lem1c
| Step | Hyp | Ref
| Expression |
| 1 | | ud5lem0c 281 |
. . 3
(a →5 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
| 2 | | ud5lem0c 281 |
. . . 4
(b →5 a)⊥ = (((b⊥ ∪ a⊥ ) ∩ (b ∪ a⊥ )) ∩ (b ∪ a)) |
| 3 | | ax-a2 31 |
. . . . . 6
(b⊥ ∪ a⊥ ) = (a⊥ ∪ b⊥ ) |
| 4 | | ax-a2 31 |
. . . . . 6
(b ∪ a⊥ ) = (a⊥ ∪ b) |
| 5 | 3, 4 | 2an 79 |
. . . . 5
((b⊥ ∪ a⊥ ) ∩ (b ∪ a⊥ )) = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) |
| 6 | | ax-a2 31 |
. . . . 5
(b ∪ a) = (a ∪
b) |
| 7 | 5, 6 | 2an 79 |
. . . 4
(((b⊥ ∪
a⊥ ) ∩ (b ∪ a⊥ )) ∩ (b ∪ a)) =
(((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a
∪ b)) |
| 8 | 2, 7 | ax-r2 36 |
. . 3
(b →5 a)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a
∪ b)) |
| 9 | 1, 8 | 2an 79 |
. 2
((a →5 b)⊥ ∩ (b →5 a)⊥ ) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a
∪ b))) |
| 10 | | an4 86 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a
∪ b))) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) ∩ ((a
∪ b) ∩ (a ∪ b))) |
| 11 | | ancom 74 |
. . . 4
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) ∩ ((a
∪ b) ∩ (a ∪ b))) =
(((a ∪ b) ∩ (a
∪ b)) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) |
| 12 | | anidm 111 |
. . . . . 6
((a ∪ b) ∩ (a
∪ b)) = (a ∪ b) |
| 13 | | an4 86 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b⊥ )) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ b))) |
| 14 | | anidm 111 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∪ b⊥ ) |
| 15 | 14 | ran 78 |
. . . . . . . . 9
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b⊥ )) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ b))) = ((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ b))) |
| 16 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∪ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ b))) = (((a
∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a⊥ ∪ b⊥ )) |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . 8
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b⊥ )) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ b))) = (((a
∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a⊥ ∪ b⊥ )) |
| 18 | | anass 76 |
. . . . . . . 8
(((a ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a⊥ ∪ b⊥ )) = ((a ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 19 | 17, 18 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b⊥ )) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ b))) = ((a ∪
b⊥ ) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 20 | 13, 19 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = ((a ∪
b⊥ ) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 21 | 12, 20 | 2an 79 |
. . . . 5
(((a ∪ b) ∩ (a
∪ b)) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) = ((a
∪ b) ∩ ((a ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) |
| 22 | | anass 76 |
. . . . . 6
(((a ∪ b) ∩ (a
∪ b⊥ )) ∩
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) = ((a ∪ b) ∩
((a ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) |
| 23 | 22 | ax-r1 35 |
. . . . 5
((a ∪ b) ∩ ((a
∪ b⊥ ) ∩
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )))) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 24 | 21, 23 | ax-r2 36 |
. . . 4
(((a ∪ b) ∩ (a
∪ b)) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)))) = (((a
∪ b) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 25 | 11, 24 | ax-r2 36 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) ∩ ((a
∪ b) ∩ (a ∪ b))) =
(((a ∪ b) ∩ (a
∪ b⊥ )) ∩
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 26 | 10, 25 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ (a
∪ b))) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
| 27 | 9, 26 | ax-r2 36 |
1
((a →5 b)⊥ ∩ (b →5 a)⊥ ) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |