Proof of Theorem ud5lem1b
Step | Hyp | Ref
| Expression |
1 | | ud5lem0c 281 |
. . 3
(a →5 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
2 | | df-i5 48 |
. . . 4
(b →5 a) = (((b ∩
a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ )) |
3 | | ax-a2 31 |
. . . 4
(((b ∩ a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ )) = ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a))) |
4 | 2, 3 | ax-r2 36 |
. . 3
(b →5 a) = ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a))) |
5 | 1, 4 | 2an 79 |
. 2
((a →5 b)⊥ ∩ (b →5 a)) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a)))) |
6 | | coman2 186 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C a⊥ |
7 | | coman1 185 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C b⊥ |
8 | 6, 7 | com2or 483 |
. . . . . 6
(b⊥ ∩ a⊥ ) C (a⊥ ∪ b⊥ ) |
9 | 6 | comcom7 460 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C a |
10 | 9, 7 | com2or 483 |
. . . . . 6
(b⊥ ∩ a⊥ ) C (a ∪ b⊥ ) |
11 | 8, 10 | com2an 484 |
. . . . 5
(b⊥ ∩ a⊥ ) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
12 | 7 | comcom7 460 |
. . . . . 6
(b⊥ ∩ a⊥ ) C b |
13 | 9, 12 | com2or 483 |
. . . . 5
(b⊥ ∩ a⊥ ) C (a ∪ b) |
14 | 11, 13 | com2an 484 |
. . . 4
(b⊥ ∩ a⊥ ) C (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
15 | 12, 9 | com2an 484 |
. . . . 5
(b⊥ ∩ a⊥ ) C (b ∩ a) |
16 | 7, 9 | com2an 484 |
. . . . 5
(b⊥ ∩ a⊥ ) C (b⊥ ∩ a) |
17 | 15, 16 | com2or 483 |
. . . 4
(b⊥ ∩ a⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
18 | 14, 17 | fh2 470 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a)))) = (((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b ∩ a) ∪ (b⊥ ∩ a)))) |
19 | | anass 76 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∪ b) ∩
(b⊥ ∩ a⊥ ))) |
20 | | ax-a2 31 |
. . . . . . . . . 10
(a ∪ b) = (b ∪
a) |
21 | | oran 87 |
. . . . . . . . . . . 12
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
22 | 21 | ax-r1 35 |
. . . . . . . . . . 11
(b⊥ ∩ a⊥ )⊥ = (b ∪ a) |
23 | 22 | con3 68 |
. . . . . . . . . 10
(b⊥ ∩ a⊥ ) = (b ∪ a)⊥ |
24 | 20, 23 | 2an 79 |
. . . . . . . . 9
((a ∪ b) ∩ (b⊥ ∩ a⊥ )) = ((b ∪ a) ∩
(b ∪ a)⊥ ) |
25 | | dff 101 |
. . . . . . . . . 10
0 = ((b ∪ a) ∩ (b
∪ a)⊥
) |
26 | 25 | ax-r1 35 |
. . . . . . . . 9
((b ∪ a) ∩ (b
∪ a)⊥ ) =
0 |
27 | 24, 26 | ax-r2 36 |
. . . . . . . 8
((a ∪ b) ∩ (b⊥ ∩ a⊥ )) = 0 |
28 | 27 | lan 77 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∪ b) ∩
(b⊥ ∩ a⊥ ))) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ 0) |
29 | | an0 108 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ 0) = 0 |
30 | 28, 29 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∪ b) ∩
(b⊥ ∩ a⊥ ))) = 0 |
31 | 19, 30 | ax-r2 36 |
. . . . 5
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) = 0 |
32 | | coman2 186 |
. . . . . . . . . . 11
(b ∩ a) C a |
33 | 32 | comcom2 183 |
. . . . . . . . . 10
(b ∩ a) C a⊥ |
34 | | coman1 185 |
. . . . . . . . . . 11
(b ∩ a) C b |
35 | 34 | comcom2 183 |
. . . . . . . . . 10
(b ∩ a) C b⊥ |
36 | 33, 35 | com2or 483 |
. . . . . . . . 9
(b ∩ a) C (a⊥ ∪ b⊥ ) |
37 | 32, 35 | com2or 483 |
. . . . . . . . 9
(b ∩ a) C (a
∪ b⊥
) |
38 | 36, 37 | com2an 484 |
. . . . . . . 8
(b ∩ a) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
39 | 32, 34 | com2or 483 |
. . . . . . . 8
(b ∩ a) C (a
∪ b) |
40 | 38, 39 | com2an 484 |
. . . . . . 7
(b ∩ a) C (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
41 | 35, 32 | com2an 484 |
. . . . . . 7
(b ∩ a) C (b⊥ ∩ a) |
42 | 40, 41 | fh2 470 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b ∩ a) ∪ (b⊥ ∩ a))) = (((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b ∩ a)) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a))) |
43 | | an32 83 |
. . . . . . . . 9
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b ∩ a)) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a))
∩ (a ∪ b)) |
44 | | an32 83 |
. . . . . . . . . . . 12
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a)) =
(((a⊥ ∪ b⊥ ) ∩ (b ∩ a))
∩ (a ∪ b⊥ )) |
45 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
(a⊥ ∪ b⊥ ) = (b⊥ ∪ a⊥ ) |
46 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
47 | 45, 46 | 2an 79 |
. . . . . . . . . . . . . . 15
((a⊥ ∪ b⊥ ) ∩ (b ∩ a)) =
((b⊥ ∪ a⊥ ) ∩ (b⊥ ∪ a⊥ )⊥
) |
48 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = ((b⊥ ∪
a⊥ ) ∩ (b⊥ ∪ a⊥ )⊥
) |
49 | 48 | ax-r1 35 |
. . . . . . . . . . . . . . 15
((b⊥ ∪ a⊥ ) ∩ (b⊥ ∪ a⊥ )⊥ ) =
0 |
50 | 47, 49 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a⊥ ∪ b⊥ ) ∩ (b ∩ a)) =
0 |
51 | 50 | ran 78 |
. . . . . . . . . . . . 13
(((a⊥ ∪
b⊥ ) ∩ (b ∩ a))
∩ (a ∪ b⊥ )) = (0 ∩ (a ∪ b⊥ )) |
52 | | an0r 109 |
. . . . . . . . . . . . 13
(0 ∩ (a ∪ b⊥ )) = 0 |
53 | 51, 52 | ax-r2 36 |
. . . . . . . . . . . 12
(((a⊥ ∪
b⊥ ) ∩ (b ∩ a))
∩ (a ∪ b⊥ )) = 0 |
54 | 44, 53 | ax-r2 36 |
. . . . . . . . . . 11
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a)) =
0 |
55 | 54 | ran 78 |
. . . . . . . . . 10
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a))
∩ (a ∪ b)) = (0 ∩ (a ∪ b)) |
56 | | an0r 109 |
. . . . . . . . . 10
(0 ∩ (a ∪ b)) = 0 |
57 | 55, 56 | ax-r2 36 |
. . . . . . . . 9
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a))
∩ (a ∪ b)) = 0 |
58 | 43, 57 | ax-r2 36 |
. . . . . . . 8
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b ∩ a)) = 0 |
59 | | lea 160 |
. . . . . . . . . . . 12
(b⊥ ∩ a) ≤ b⊥ |
60 | | leor 159 |
. . . . . . . . . . . . 13
b⊥ ≤ (a⊥ ∪ b⊥ ) |
61 | | leor 159 |
. . . . . . . . . . . . 13
b⊥ ≤ (a ∪ b⊥ ) |
62 | 60, 61 | ler2an 173 |
. . . . . . . . . . . 12
b⊥ ≤ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
63 | 59, 62 | letr 137 |
. . . . . . . . . . 11
(b⊥ ∩ a) ≤ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
64 | | lear 161 |
. . . . . . . . . . . 12
(b⊥ ∩ a) ≤ a |
65 | | leo 158 |
. . . . . . . . . . . 12
a ≤ (a ∪ b) |
66 | 64, 65 | letr 137 |
. . . . . . . . . . 11
(b⊥ ∩ a) ≤ (a ∪
b) |
67 | 63, 66 | ler2an 173 |
. . . . . . . . . 10
(b⊥ ∩ a) ≤ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b)) |
68 | 67 | df2le2 136 |
. . . . . . . . 9
((b⊥ ∩ a) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))) =
(b⊥ ∩ a) |
69 | | ancom 74 |
. . . . . . . . 9
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))) |
70 | | ancom 74 |
. . . . . . . . 9
(a ∩ b⊥ ) = (b⊥ ∩ a) |
71 | 68, 69, 70 | 3tr1 63 |
. . . . . . . 8
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a)) = (a ∩
b⊥ ) |
72 | 58, 71 | 2or 72 |
. . . . . . 7
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b ∩ a)) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a))) = (0 ∪ (a ∩ b⊥ )) |
73 | | or0r 103 |
. . . . . . 7
(0 ∪ (a ∩ b⊥ )) = (a ∩ b⊥ ) |
74 | 72, 73 | ax-r2 36 |
. . . . . 6
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b ∩ a)) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a))) = (a ∩
b⊥ ) |
75 | 42, 74 | ax-r2 36 |
. . . . 5
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b ∩ a) ∪ (b⊥ ∩ a))) = (a ∩
b⊥ ) |
76 | 31, 75 | 2or 72 |
. . . 4
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b ∩ a) ∪ (b⊥ ∩ a)))) = (0 ∪ (a ∩ b⊥ )) |
77 | 76, 73 | ax-r2 36 |
. . 3
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b ∩ a) ∪ (b⊥ ∩ a)))) = (a ∩
b⊥ ) |
78 | 18, 77 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (a ∪ b))
∩ ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a)))) = (a ∩
b⊥ ) |
79 | 5, 78 | ax-r2 36 |
1
((a →5 b)⊥ ∩ (b →5 a)) = (a ∩
b⊥ ) |