Proof of Theorem wledio
Step | Hyp | Ref
| Expression |
1 | | anidm 111 |
. . . . . 6
(a ∩ a) = a |
2 | 1 | bi1 118 |
. . . . 5
((a ∩ a) ≡ a) =
1 |
3 | 2 | wr1 197 |
. . . 4
(a ≡ (a ∩ a)) =
1 |
4 | | wleo 387 |
. . . . 5
(a ≤2 (a ∪ b)) =
1 |
5 | | wleo 387 |
. . . . 5
(a ≤2 (a ∪ c)) =
1 |
6 | 4, 5 | wle2an 404 |
. . . 4
((a ∩ a) ≤2 ((a ∪ b) ∩
(a ∪ c))) = 1 |
7 | 3, 6 | wbltr 397 |
. . 3
(a ≤2 ((a ∪ b) ∩
(a ∪ c))) = 1 |
8 | | wleo 387 |
. . . . 5
(b ≤2 (b ∪ a)) =
1 |
9 | | ax-a2 31 |
. . . . . 6
(b ∪ a) = (a ∪
b) |
10 | 9 | bi1 118 |
. . . . 5
((b ∪ a) ≡ (a
∪ b)) = 1 |
11 | 8, 10 | wlbtr 398 |
. . . 4
(b ≤2 (a ∪ b)) =
1 |
12 | | wleo 387 |
. . . . 5
(c ≤2 (c ∪ a)) =
1 |
13 | | ax-a2 31 |
. . . . . 6
(c ∪ a) = (a ∪
c) |
14 | 13 | bi1 118 |
. . . . 5
((c ∪ a) ≡ (a
∪ c)) = 1 |
15 | 12, 14 | wlbtr 398 |
. . . 4
(c ≤2 (a ∪ c)) =
1 |
16 | 11, 15 | wle2an 404 |
. . 3
((b ∩ c) ≤2 ((a ∪ b) ∩
(a ∪ c))) = 1 |
17 | 7, 16 | wle2or 403 |
. 2
((a ∪ (b ∩ c))
≤2 (((a ∪ b) ∩ (a
∪ c)) ∪ ((a ∪ b) ∩
(a ∪ c)))) = 1 |
18 | | oridm 110 |
. . 3
(((a ∪ b) ∩ (a
∪ c)) ∪ ((a ∪ b) ∩
(a ∪ c))) = ((a ∪
b) ∩ (a ∪ c)) |
19 | 18 | bi1 118 |
. 2
((((a ∪ b) ∩ (a
∪ c)) ∪ ((a ∪ b) ∩
(a ∪ c))) ≡ ((a
∪ b) ∩ (a ∪ c))) =
1 |
20 | 17, 19 | wlbtr 398 |
1
((a ∪ (b ∩ c))
≤2 ((a ∪ b) ∩ (a
∪ c))) = 1 |