Proof of Theorem wcomlem
| Step | Hyp | Ref
| Expression |
| 1 | | ax-a2 31 |
. . . . . . . . . 10
(a⊥ ∪ b) = (b ∪
a⊥ ) |
| 2 | 1 | bi1 118 |
. . . . . . . . 9
((a⊥ ∪ b) ≡ (b
∪ a⊥ )) =
1 |
| 3 | 2 | wran 369 |
. . . . . . . 8
(((a⊥ ∪
b) ∩ b) ≡ ((b
∪ a⊥ ) ∩ b)) = 1 |
| 4 | | ancom 74 |
. . . . . . . . 9
((b ∪ a⊥ ) ∩ b) = (b ∩
(b ∪ a⊥ )) |
| 5 | 4 | bi1 118 |
. . . . . . . 8
(((b ∪ a⊥ ) ∩ b) ≡ (b
∩ (b ∪ a⊥ ))) = 1 |
| 6 | 3, 5 | wr2 371 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b) ≡ (b
∩ (b ∪ a⊥ ))) = 1 |
| 7 | | anabs 121 |
. . . . . . . 8
(b ∩ (b ∪ a⊥ )) = b |
| 8 | 7 | bi1 118 |
. . . . . . 7
((b ∩ (b ∪ a⊥ )) ≡ b) = 1 |
| 9 | 6, 8 | wr2 371 |
. . . . . 6
(((a⊥ ∪
b) ∩ b) ≡ b) =
1 |
| 10 | 9 | wlan 370 |
. . . . 5
(((a⊥ ∪
b⊥ ) ∩ ((a⊥ ∪ b) ∩ b))
≡ ((a⊥ ∪
b⊥ ) ∩ b)) = 1 |
| 11 | | wcomlem.1 |
. . . . . . . . . 10
(a ≡ ((a ∩ b) ∪
(a ∩ b⊥ ))) = 1 |
| 12 | | df-a 40 |
. . . . . . . . . . . 12
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 13 | 12 | bi1 118 |
. . . . . . . . . . 11
((a ∩ b) ≡ (a⊥ ∪ b⊥ )⊥ ) =
1 |
| 14 | | anor1 88 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 15 | 14 | bi1 118 |
. . . . . . . . . . 11
((a ∩ b⊥ ) ≡ (a⊥ ∪ b)⊥ ) = 1 |
| 16 | 13, 15 | w2or 372 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a
∩ b⊥ )) ≡
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ )) = 1 |
| 17 | 11, 16 | wr2 371 |
. . . . . . . . 9
(a ≡ ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ )) = 1 |
| 18 | 17 | wr4 199 |
. . . . . . . 8
(a⊥ ≡
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ )⊥ ) =
1 |
| 19 | | df-a 40 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥
)⊥ |
| 20 | 19 | bi1 118 |
. . . . . . . . 9
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b)) ≡ ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ )⊥ ) =
1 |
| 21 | 20 | wr1 197 |
. . . . . . . 8
(((a⊥ ∪
b⊥ )⊥
∪ (a⊥ ∪ b)⊥ )⊥ ≡
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = 1 |
| 22 | 18, 21 | wr2 371 |
. . . . . . 7
(a⊥ ≡
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = 1 |
| 23 | 22 | wran 369 |
. . . . . 6
((a⊥ ∩ b) ≡ (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ b)) =
1 |
| 24 | | anass 76 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b)) ∩ b) =
((a⊥ ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ b)) |
| 25 | 24 | bi1 118 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b)) ∩ b)
≡ ((a⊥ ∪
b⊥ ) ∩ ((a⊥ ∪ b) ∩ b))) =
1 |
| 26 | 23, 25 | wr2 371 |
. . . . 5
((a⊥ ∩ b) ≡ ((a⊥ ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ b))) =
1 |
| 27 | 13 | wcon2 208 |
. . . . . 6
((a ∩ b)⊥ ≡ (a⊥ ∪ b⊥ )) = 1 |
| 28 | 27 | wran 369 |
. . . . 5
(((a ∩ b)⊥ ∩ b) ≡ ((a⊥ ∪ b⊥ ) ∩ b)) = 1 |
| 29 | 10, 26, 28 | w3tr1 374 |
. . . 4
((a⊥ ∩ b) ≡ ((a
∩ b)⊥ ∩ b)) = 1 |
| 30 | 29 | wlor 368 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ≡ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ b))) = 1 |
| 31 | 30 | wr1 197 |
. 2
(((a ∩ b) ∪ ((a
∩ b)⊥ ∩ b)) ≡ ((a
∩ b) ∪ (a⊥ ∩ b))) = 1 |
| 32 | | ax-a2 31 |
. . . . . 6
((a ∩ b) ∪ b) =
(b ∪ (a ∩ b)) |
| 33 | 32 | bi1 118 |
. . . . 5
(((a ∩ b) ∪ b)
≡ (b ∪ (a ∩ b))) =
1 |
| 34 | | ancom 74 |
. . . . . . . 8
(a ∩ b) = (b ∩
a) |
| 35 | 34 | bi1 118 |
. . . . . . 7
((a ∩ b) ≡ (b
∩ a)) = 1 |
| 36 | 35 | wlor 368 |
. . . . . 6
((b ∪ (a ∩ b))
≡ (b ∪ (b ∩ a))) =
1 |
| 37 | | orabs 120 |
. . . . . . 7
(b ∪ (b ∩ a)) =
b |
| 38 | 37 | bi1 118 |
. . . . . 6
((b ∪ (b ∩ a))
≡ b) = 1 |
| 39 | 36, 38 | wr2 371 |
. . . . 5
((b ∪ (a ∩ b))
≡ b) = 1 |
| 40 | 33, 39 | wr2 371 |
. . . 4
(((a ∩ b) ∪ b)
≡ b) = 1 |
| 41 | 40 | wdf-le1 378 |
. . 3
((a ∩ b) ≤2 b) = 1 |
| 42 | 41 | wom4 380 |
. 2
(((a ∩ b) ∪ ((a
∩ b)⊥ ∩ b)) ≡ b) =
1 |
| 43 | | ancom 74 |
. . . 4
(a⊥ ∩ b) = (b ∩
a⊥ ) |
| 44 | 43 | bi1 118 |
. . 3
((a⊥ ∩ b) ≡ (b
∩ a⊥ )) =
1 |
| 45 | 35, 44 | w2or 372 |
. 2
(((a ∩ b) ∪ (a⊥ ∩ b)) ≡ ((b
∩ a) ∪ (b ∩ a⊥ ))) = 1 |
| 46 | 31, 42, 45 | w3tr2 375 |
1
(b ≡ ((b ∩ a) ∪
(b ∩ a⊥ ))) = 1 |