Proof of Theorem wfh2
Step | Hyp | Ref
| Expression |
1 | | wledi 405 |
. . 3
(((b ∩ a) ∪ (b
∩ c)) ≤2 (b ∩ (a ∪
c))) = 1 |
2 | | oran 87 |
. . . . . . . . . . . 12
((b ∩ a) ∪ (b
∩ c)) = ((b ∩ a)⊥ ∩ (b ∩ c)⊥
)⊥ |
3 | 2 | bi1 118 |
. . . . . . . . . . 11
(((b ∩ a) ∪ (b
∩ c)) ≡ ((b ∩ a)⊥ ∩ (b ∩ c)⊥ )⊥ ) =
1 |
4 | | df-a 40 |
. . . . . . . . . . . . . . 15
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
5 | 4 | bi1 118 |
. . . . . . . . . . . . . 14
((b ∩ a) ≡ (b⊥ ∪ a⊥ )⊥ ) =
1 |
6 | 5 | wcon2 208 |
. . . . . . . . . . . . 13
((b ∩ a)⊥ ≡ (b⊥ ∪ a⊥ )) = 1 |
7 | 6 | wran 369 |
. . . . . . . . . . . 12
(((b ∩ a)⊥ ∩ (b ∩ c)⊥ ) ≡ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) = 1 |
8 | 7 | wr4 199 |
. . . . . . . . . . 11
(((b ∩ a)⊥ ∩ (b ∩ c)⊥ )⊥ ≡
((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )⊥ ) =
1 |
9 | 3, 8 | wr2 371 |
. . . . . . . . . 10
(((b ∩ a) ∪ (b
∩ c)) ≡ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )⊥ ) =
1 |
10 | 9 | wcon2 208 |
. . . . . . . . 9
(((b ∩ a) ∪ (b
∩ c))⊥ ≡
((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) = 1 |
11 | 10 | wlan 370 |
. . . . . . . 8
(((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) ≡
((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ ))) = 1 |
12 | | an4 86 |
. . . . . . . . . 10
((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) = ((b ∩ (b⊥ ∪ a⊥ )) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ )) |
13 | 12 | bi1 118 |
. . . . . . . . 9
(((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) ≡ ((b ∩ (b⊥ ∪ a⊥ )) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ ))) = 1 |
14 | | wfh.1 |
. . . . . . . . . . . . . 14
C (a, b) = 1 |
15 | 14 | wcomcom 414 |
. . . . . . . . . . . . 13
C (b, a) = 1 |
16 | 15 | wcomcom2 415 |
. . . . . . . . . . . 12
C (b, a⊥ ) = 1 |
17 | 16 | wcom3ii 419 |
. . . . . . . . . . 11
((b ∩ (b⊥ ∪ a⊥ )) ≡ (b ∩ a⊥ )) = 1 |
18 | | ancom 74 |
. . . . . . . . . . . 12
(b ∩ a⊥ ) = (a⊥ ∩ b) |
19 | 18 | bi1 118 |
. . . . . . . . . . 11
((b ∩ a⊥ ) ≡ (a⊥ ∩ b)) = 1 |
20 | 17, 19 | wr2 371 |
. . . . . . . . . 10
((b ∩ (b⊥ ∪ a⊥ )) ≡ (a⊥ ∩ b)) = 1 |
21 | 20 | wran 369 |
. . . . . . . . 9
(((b ∩ (b⊥ ∪ a⊥ )) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ )) ≡ ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ ))) = 1 |
22 | 13, 21 | wr2 371 |
. . . . . . . 8
(((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) ≡ ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ ))) = 1 |
23 | 11, 22 | wr2 371 |
. . . . . . 7
(((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) ≡
((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ ))) = 1 |
24 | | an4 86 |
. . . . . . . 8
((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) = ((a⊥ ∩ (a ∪ c))
∩ (b ∩ (b ∩ c)⊥ )) |
25 | 24 | bi1 118 |
. . . . . . 7
(((a⊥ ∩
b) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ )) ≡ ((a⊥ ∩ (a ∪ c))
∩ (b ∩ (b ∩ c)⊥ ))) = 1 |
26 | 23, 25 | wr2 371 |
. . . . . 6
(((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) ≡
((a⊥ ∩ (a ∪ c))
∩ (b ∩ (b ∩ c)⊥ ))) = 1 |
27 | | ax-a1 30 |
. . . . . . . . . . 11
a = a⊥
⊥ |
28 | 27 | bi1 118 |
. . . . . . . . . 10
(a ≡ a⊥ ⊥ ) =
1 |
29 | 28 | wr5-2v 366 |
. . . . . . . . 9
((a ∪ c) ≡ (a⊥ ⊥ ∪
c)) = 1 |
30 | 29 | wlan 370 |
. . . . . . . 8
((a⊥ ∩
(a ∪ c)) ≡ (a⊥ ∩ (a⊥ ⊥ ∪
c))) = 1 |
31 | | wfh.2 |
. . . . . . . . . 10
C (a, c) = 1 |
32 | 31 | wcomcom3 416 |
. . . . . . . . 9
C (a⊥ ,
c) = 1 |
33 | 32 | wcom3ii 419 |
. . . . . . . 8
((a⊥ ∩
(a⊥ ⊥
∪ c)) ≡ (a⊥ ∩ c)) = 1 |
34 | 30, 33 | wr2 371 |
. . . . . . 7
((a⊥ ∩
(a ∪ c)) ≡ (a⊥ ∩ c)) = 1 |
35 | 34 | wran 369 |
. . . . . 6
(((a⊥ ∩
(a ∪ c)) ∩ (b
∩ (b ∩ c)⊥ )) ≡ ((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ ))) = 1 |
36 | 26, 35 | wr2 371 |
. . . . 5
(((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) ≡
((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ ))) = 1 |
37 | | anass 76 |
. . . . . 6
((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ )) = (a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) |
38 | 37 | bi1 118 |
. . . . 5
(((a⊥ ∩
c) ∩ (b ∩ (b ∩
c)⊥ )) ≡ (a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ )))) = 1 |
39 | 36, 38 | wr2 371 |
. . . 4
(((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) ≡
(a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ )))) = 1 |
40 | | anass 76 |
. . . . . . . . 9
((b ∩ c) ∩ (b
∩ c)⊥ ) = (b ∩ (c ∩
(b ∩ c)⊥ )) |
41 | 40 | bi1 118 |
. . . . . . . 8
(((b ∩ c) ∩ (b
∩ c)⊥ ) ≡
(b ∩ (c ∩ (b ∩
c)⊥ ))) =
1 |
42 | 41 | wr1 197 |
. . . . . . 7
((b ∩ (c ∩ (b ∩
c)⊥ )) ≡ ((b ∩ c) ∩
(b ∩ c)⊥ )) = 1 |
43 | | an12 81 |
. . . . . . . 8
(c ∩ (b ∩ (b ∩
c)⊥ )) = (b ∩ (c ∩
(b ∩ c)⊥ )) |
44 | 43 | bi1 118 |
. . . . . . 7
((c ∩ (b ∩ (b ∩
c)⊥ )) ≡ (b ∩ (c ∩
(b ∩ c)⊥ ))) = 1 |
45 | | dff 101 |
. . . . . . . 8
0 = ((b ∩ c) ∩ (b
∩ c)⊥
) |
46 | 45 | bi1 118 |
. . . . . . 7
(0 ≡ ((b ∩ c) ∩ (b
∩ c)⊥ )) =
1 |
47 | 42, 44, 46 | w3tr1 374 |
. . . . . 6
((c ∩ (b ∩ (b ∩
c)⊥ )) ≡ 0) =
1 |
48 | 47 | wlan 370 |
. . . . 5
((a⊥ ∩
(c ∩ (b ∩ (b ∩
c)⊥ ))) ≡ (a⊥ ∩ 0)) = 1 |
49 | | an0 108 |
. . . . . 6
(a⊥ ∩ 0) =
0 |
50 | 49 | bi1 118 |
. . . . 5
((a⊥ ∩ 0)
≡ 0) = 1 |
51 | 48, 50 | wr2 371 |
. . . 4
((a⊥ ∩
(c ∩ (b ∩ (b ∩
c)⊥ ))) ≡ 0) =
1 |
52 | 39, 51 | wr2 371 |
. . 3
(((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) ≡ 0) =
1 |
53 | 1, 52 | wom5 381 |
. 2
(((b ∩ a) ∪ (b
∩ c)) ≡ (b ∩ (a ∪
c))) = 1 |
54 | 53 | wr1 197 |
1
((b ∩ (a ∪ c))
≡ ((b ∩ a) ∪ (b
∩ c))) = 1 |