Proof of Theorem wcomdr
Step | Hyp | Ref
| Expression |
1 | | wcomdr.1 |
. . . . 5
(a ≡ ((a ∪ b) ∩
(a ∪ b⊥ ))) = 1 |
2 | | df-a 40 |
. . . . . . 7
((a ∪ b) ∩ (a
∪ b⊥ )) = ((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥
)⊥ |
3 | 2 | bi1 118 |
. . . . . 6
(((a ∪ b) ∩ (a
∪ b⊥ )) ≡
((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥
)⊥ ) = 1 |
4 | | oran 87 |
. . . . . . . . . 10
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
5 | 4 | bi1 118 |
. . . . . . . . 9
((a ∪ b) ≡ (a⊥ ∩ b⊥ )⊥ ) =
1 |
6 | 5 | wcon2 208 |
. . . . . . . 8
((a ∪ b)⊥ ≡ (a⊥ ∩ b⊥ )) = 1 |
7 | | oran 87 |
. . . . . . . . . 10
(a ∪ b⊥ ) = (a⊥ ∩ b⊥ ⊥
)⊥ |
8 | 7 | bi1 118 |
. . . . . . . . 9
((a ∪ b⊥ ) ≡ (a⊥ ∩ b⊥ ⊥
)⊥ ) = 1 |
9 | 8 | wcon2 208 |
. . . . . . . 8
((a ∪ b⊥ )⊥ ≡
(a⊥ ∩ b⊥ ⊥ )) =
1 |
10 | 6, 9 | w2or 372 |
. . . . . . 7
(((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥ ) ≡
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
1 |
11 | 10 | wr4 199 |
. . . . . 6
(((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥
)⊥ ≡ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ ) = 1 |
12 | 3, 11 | wr2 371 |
. . . . 5
(((a ∪ b) ∩ (a
∪ b⊥ )) ≡
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ ) = 1 |
13 | 1, 12 | wr2 371 |
. . . 4
(a ≡ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ ) = 1 |
14 | 13 | wcon2 208 |
. . 3
(a⊥ ≡
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
1 |
15 | 14 | wdf-c1 383 |
. 2
C (a⊥ ,
b⊥ ) = 1 |
16 | 15 | wcomcom5 420 |
1
C (a, b) = 1 |