Proof of Theorem wdid0id4
| Step | Hyp | Ref
| Expression |
| 1 | | df-id4 53 |
. 2
(a ≡4 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ (a ∩ b))) |
| 2 | | df-id0 49 |
. . . . 5
(a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
| 3 | 2 | ax-r1 35 |
. . . 4
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = (a
≡0 b) |
| 4 | | wdid0id5.1 |
. . . 4
(a ≡0 b) = 1 |
| 5 | 3, 4 | ax-r2 36 |
. . 3
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = 1 |
| 6 | | wddi3 1109 |
. . . . . 6
((b⊥ ∪
(a ∩ b)) ≡ ((b⊥ ∪ a) ∩ (b⊥ ∪ b))) = 1 |
| 7 | | wa2 192 |
. . . . . . . 8
((b⊥ ∪ b) ≡ (b
∪ b⊥ )) =
1 |
| 8 | 7 | wlan 370 |
. . . . . . 7
(((b⊥ ∪
a) ∩ (b⊥ ∪ b)) ≡ ((b⊥ ∪ a) ∩ (b
∪ b⊥ ))) =
1 |
| 9 | | wa4 194 |
. . . . . . . 8
(((b⊥ ∪
a) ∪ (b ∪ b⊥ )) ≡ (b ∪ b⊥ )) = 1 |
| 10 | 9 | wleoa 376 |
. . . . . . 7
(((b⊥ ∪
a) ∩ (b ∪ b⊥ )) ≡ (b⊥ ∪ a)) = 1 |
| 11 | 8, 10 | wr2 371 |
. . . . . 6
(((b⊥ ∪
a) ∩ (b⊥ ∪ b)) ≡ (b⊥ ∪ a)) = 1 |
| 12 | 6, 11 | wr2 371 |
. . . . 5
((b⊥ ∪
(a ∩ b)) ≡ (b⊥ ∪ a)) = 1 |
| 13 | 12 | wr1 197 |
. . . 4
((b⊥ ∪ a) ≡ (b⊥ ∪ (a ∩ b))) =
1 |
| 14 | 13 | wlan 370 |
. . 3
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ≡ ((a⊥ ∪ b) ∩ (b⊥ ∪ (a ∩ b)))) =
1 |
| 15 | 5, 14 | wwbmp 205 |
. 2
((a⊥ ∪ b) ∩ (b⊥ ∪ (a ∩ b))) =
1 |
| 16 | 1, 15 | ax-r2 36 |
1
(a ≡4 b) = 1 |