Proof of Theorem wledi
Step | Hyp | Ref
| Expression |
1 | | anidm 111 |
. . . 4
(((a ∩ b) ∪ (a
∩ c)) ∩ ((a ∩ b) ∪
(a ∩ c))) = ((a ∩
b) ∪ (a ∩ c)) |
2 | 1 | bi1 118 |
. . 3
((((a ∩ b) ∪ (a
∩ c)) ∩ ((a ∩ b) ∪
(a ∩ c))) ≡ ((a
∩ b) ∪ (a ∩ c))) =
1 |
3 | 2 | wr1 197 |
. 2
(((a ∩ b) ∪ (a
∩ c)) ≡ (((a ∩ b) ∪
(a ∩ c)) ∩ ((a
∩ b) ∪ (a ∩ c)))) =
1 |
4 | | wlea 388 |
. . . . 5
((a ∩ b) ≤2 a) = 1 |
5 | | wlea 388 |
. . . . 5
((a ∩ c) ≤2 a) = 1 |
6 | 4, 5 | wle2or 403 |
. . . 4
(((a ∩ b) ∪ (a
∩ c)) ≤2 (a ∪ a)) =
1 |
7 | | oridm 110 |
. . . . 5
(a ∪ a) = a |
8 | 7 | bi1 118 |
. . . 4
((a ∪ a) ≡ a) =
1 |
9 | 6, 8 | wlbtr 398 |
. . 3
(((a ∩ b) ∪ (a
∩ c)) ≤2 a) = 1 |
10 | | ancom 74 |
. . . . . 6
(a ∩ b) = (b ∩
a) |
11 | 10 | bi1 118 |
. . . . 5
((a ∩ b) ≡ (b
∩ a)) = 1 |
12 | | wlea 388 |
. . . . 5
((b ∩ a) ≤2 b) = 1 |
13 | 11, 12 | wbltr 397 |
. . . 4
((a ∩ b) ≤2 b) = 1 |
14 | | ancom 74 |
. . . . . 6
(a ∩ c) = (c ∩
a) |
15 | 14 | bi1 118 |
. . . . 5
((a ∩ c) ≡ (c
∩ a)) = 1 |
16 | | wlea 388 |
. . . . 5
((c ∩ a) ≤2 c) = 1 |
17 | 15, 16 | wbltr 397 |
. . . 4
((a ∩ c) ≤2 c) = 1 |
18 | 13, 17 | wle2or 403 |
. . 3
(((a ∩ b) ∪ (a
∩ c)) ≤2 (b ∪ c)) =
1 |
19 | 9, 18 | wle2an 404 |
. 2
((((a ∩ b) ∪ (a
∩ c)) ∩ ((a ∩ b) ∪
(a ∩ c))) ≤2 (a ∩ (b ∪
c))) = 1 |
20 | 3, 19 | wbltr 397 |
1
(((a ∩ b) ∪ (a
∩ c)) ≤2 (a ∩ (b ∪
c))) = 1 |