Proof of Theorem ska4
| Step | Hyp | Ref
| Expression |
| 1 | | dfnb 95 |
. . 3
(a ≡ b)⊥ = ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |
| 2 | | dfb 94 |
. . 3
((a ∩ c) ≡ (b
∩ c)) = (((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ )) |
| 3 | 1, 2 | 2or 72 |
. 2
((a ≡ b)⊥ ∪ ((a ∩ c)
≡ (b ∩ c))) = (((a
∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ ))) |
| 4 | | ax-a2 31 |
. 2
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ ))) = ((((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ )) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) |
| 5 | | ax-a3 32 |
. . 3
((((a ∩ c) ∩ (b
∩ c)) ∪ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ )) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) = (((a ∩ c) ∩
(b ∩ c)) ∪ (((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )))) |
| 6 | | le1 146 |
. . . . . . . . 9
(((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) ≤
1 |
| 7 | | df-t 41 |
. . . . . . . . . . 11
1 = ((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
| 8 | | oran 87 |
. . . . . . . . . . . . 13
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 9 | 8 | lor 70 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
| 10 | 9 | ax-r1 35 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥ ) =
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) |
| 11 | 7, 10 | ax-r2 36 |
. . . . . . . . . 10
1 = ((a⊥ ∩
b⊥ ) ∪ (a ∪ b)) |
| 12 | | lea 160 |
. . . . . . . . . . . . 13
(a ∩ c) ≤ a |
| 13 | 12 | lecon 154 |
. . . . . . . . . . . 12
a⊥ ≤ (a ∩ c)⊥ |
| 14 | | lea 160 |
. . . . . . . . . . . . 13
(b ∩ c) ≤ b |
| 15 | 14 | lecon 154 |
. . . . . . . . . . . 12
b⊥ ≤ (b ∩ c)⊥ |
| 16 | 13, 15 | le2an 169 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) ≤ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) |
| 17 | 16 | leror 152 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) ≤
(((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) |
| 18 | 11, 17 | bltr 138 |
. . . . . . . . 9
1 ≤ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) |
| 19 | 6, 18 | lebi 145 |
. . . . . . . 8
(((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) =
1 |
| 20 | 19 | ran 78 |
. . . . . . 7
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = (1 ∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
| 21 | | ancom 74 |
. . . . . . 7
(1 ∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) ∩ 1) |
| 22 | | an1 106 |
. . . . . . 7
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) ∩ 1) = (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) |
| 23 | 20, 21, 22 | 3tr 65 |
. . . . . 6
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) |
| 24 | 23 | lor 70 |
. . . . 5
(((a ∩ c) ∩ (b
∩ c)) ∪ ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )))) = (((a ∩ c) ∩
(b ∩ c)) ∪ (((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
| 25 | | le1 146 |
. . . . . 6
(((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) ≤ 1 |
| 26 | | df-t 41 |
. . . . . . . 8
1 = (((a ∩ b) ∩ c)
∪ ((a ∩ b) ∩ c)⊥ ) |
| 27 | | anandir 115 |
. . . . . . . . 9
((a ∩ b) ∩ c) =
((a ∩ c) ∩ (b
∩ c)) |
| 28 | | oran3 93 |
. . . . . . . . . . . . 13
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
| 29 | 28 | ax-r5 38 |
. . . . . . . . . . . 12
((a⊥ ∪ b⊥ ) ∪ c⊥ ) = ((a ∩ b)⊥ ∪ c⊥ ) |
| 30 | | oran3 93 |
. . . . . . . . . . . 12
((a ∩ b)⊥ ∪ c⊥ ) = ((a ∩ b) ∩
c)⊥ |
| 31 | 29, 30 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∪ b⊥ ) ∪ c⊥ ) = ((a ∩ b) ∩
c)⊥ |
| 32 | 31 | ax-r1 35 |
. . . . . . . . . 10
((a ∩ b) ∩ c)⊥ = ((a⊥ ∪ b⊥ ) ∪ c⊥ ) |
| 33 | | ax-a2 31 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∪ c⊥ ) = (c⊥ ∪ (a⊥ ∪ b⊥ )) |
| 34 | 32, 33 | ax-r2 36 |
. . . . . . . . 9
((a ∩ b) ∩ c)⊥ = (c⊥ ∪ (a⊥ ∪ b⊥ )) |
| 35 | 27, 34 | 2or 72 |
. . . . . . . 8
(((a ∩ b) ∩ c)
∪ ((a ∩ b) ∩ c)⊥ ) = (((a ∩ c) ∩
(b ∩ c)) ∪ (c⊥ ∪ (a⊥ ∪ b⊥ ))) |
| 36 | 26, 35 | ax-r2 36 |
. . . . . . 7
1 = (((a ∩ c) ∩ (b
∩ c)) ∪ (c⊥ ∪ (a⊥ ∪ b⊥ ))) |
| 37 | | lear 161 |
. . . . . . . . . . 11
(a ∩ c) ≤ c |
| 38 | 37 | lecon 154 |
. . . . . . . . . 10
c⊥ ≤ (a ∩ c)⊥ |
| 39 | | lear 161 |
. . . . . . . . . . 11
(b ∩ c) ≤ c |
| 40 | 39 | lecon 154 |
. . . . . . . . . 10
c⊥ ≤ (b ∩ c)⊥ |
| 41 | 38, 40 | ler2an 173 |
. . . . . . . . 9
c⊥ ≤ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) |
| 42 | 41 | leror 152 |
. . . . . . . 8
(c⊥ ∪ (a⊥ ∪ b⊥ )) ≤ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) |
| 43 | 42 | lelor 166 |
. . . . . . 7
(((a ∩ c) ∩ (b
∩ c)) ∪ (c⊥ ∪ (a⊥ ∪ b⊥ ))) ≤ (((a ∩ c) ∩
(b ∩ c)) ∪ (((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
| 44 | 36, 43 | bltr 138 |
. . . . . 6
1 ≤ (((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
| 45 | 25, 44 | lebi 145 |
. . . . 5
(((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = 1 |
| 46 | 24, 45 | ax-r2 36 |
. . . 4
(((a ∩ c) ∩ (b
∩ c)) ∪ ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )))) = 1 |
| 47 | | wlea 388 |
. . . . . . . . . . 11
((a ∩ c) ≤2 a) = 1 |
| 48 | | wleo 387 |
. . . . . . . . . . 11
(a ≤2 (a ∪ b)) =
1 |
| 49 | 47, 48 | wletr 396 |
. . . . . . . . . 10
((a ∩ c) ≤2 (a ∪ b)) =
1 |
| 50 | 49 | wlecom 409 |
. . . . . . . . 9
C ((a ∩ c), (a ∪
b)) = 1 |
| 51 | 50 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), (a ∩
c)) = 1 |
| 52 | 51 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), (a ∩
c)⊥ ) = 1 |
| 53 | | wlea 388 |
. . . . . . . . . . 11
((b ∩ c) ≤2 b) = 1 |
| 54 | | wleo 387 |
. . . . . . . . . . . 12
(b ≤2 (b ∪ a)) =
1 |
| 55 | | ax-a2 31 |
. . . . . . . . . . . . 13
(b ∪ a) = (a ∪
b) |
| 56 | 55 | bi1 118 |
. . . . . . . . . . . 12
((b ∪ a) ≡ (a
∪ b)) = 1 |
| 57 | 54, 56 | wlbtr 398 |
. . . . . . . . . . 11
(b ≤2 (a ∪ b)) =
1 |
| 58 | 53, 57 | wletr 396 |
. . . . . . . . . 10
((b ∩ c) ≤2 (a ∪ b)) =
1 |
| 59 | 58 | wlecom 409 |
. . . . . . . . 9
C ((b ∩ c), (a ∪
b)) = 1 |
| 60 | 59 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), (b ∩
c)) = 1 |
| 61 | 60 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), (b ∩
c)⊥ ) = 1 |
| 62 | 52, 61 | wcom2an 428 |
. . . . . 6
C ((a ∪ b), ((a ∩
c)⊥ ∩ (b ∩ c)⊥ )) = 1 |
| 63 | | wcomorr 412 |
. . . . . . . . 9
C (a, (a ∪ b)) =
1 |
| 64 | 63 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), a) =
1 |
| 65 | 64 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), a⊥ ) = 1 |
| 66 | | wcomorr 412 |
. . . . . . . . . 10
C (b, (b ∪ a)) =
1 |
| 67 | 66, 56 | wcbtr 411 |
. . . . . . . . 9
C (b, (a ∪ b)) =
1 |
| 68 | 67 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), b) =
1 |
| 69 | 68 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), b⊥ ) = 1 |
| 70 | 65, 69 | wcom2or 427 |
. . . . . 6
C ((a ∪ b), (a⊥ ∪ b⊥ )) = 1 |
| 71 | 62, 70 | wfh4 426 |
. . . . 5
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) ≡ ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )))) = 1 |
| 72 | 71 | wlor 368 |
. . . 4
((((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )))) ≡ (((a ∩ c) ∩
(b ∩ c)) ∪ ((((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))))) = 1 |
| 73 | 46, 72 | wwbmpr 206 |
. . 3
(((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )))) = 1 |
| 74 | 5, 73 | ax-r2 36 |
. 2
((((a ∩ c) ∩ (b
∩ c)) ∪ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ )) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) = 1 |
| 75 | 3, 4, 74 | 3tr 65 |
1
((a ≡ b)⊥ ∪ ((a ∩ c)
≡ (b ∩ c))) = 1 |