Proof of Theorem ska4
Step | Hyp | Ref
| Expression |
1 | | dfnb 95 |
. . 3
(a ≡ b)⊥ = ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |
2 | | dfb 94 |
. . 3
((a ∩ c) ≡ (b
∩ c)) = (((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ )) |
3 | 1, 2 | 2or 72 |
. 2
((a ≡ b)⊥ ∪ ((a ∩ c)
≡ (b ∩ c))) = (((a
∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ ))) |
4 | | ax-a2 31 |
. 2
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ ))) = ((((a ∩ c) ∩
(b ∩ c)) ∪ ((a
∩ c)⊥ ∩ (b ∩ c)⊥ )) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) |
5 | | ax-a3 32 |
. . 3
((((a ∩ c) ∩ (b
∩ c)) ∪ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ )) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) = (((a ∩ c) ∩
(b ∩ c)) ∪ (((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )))) |
6 | | le1 146 |
. . . . . . . . 9
(((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) ≤
1 |
7 | | df-t 41 |
. . . . . . . . . . 11
1 = ((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
8 | | oran 87 |
. . . . . . . . . . . . 13
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
9 | 8 | lor 70 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
10 | 9 | ax-r1 35 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥ ) =
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) |
11 | 7, 10 | ax-r2 36 |
. . . . . . . . . 10
1 = ((a⊥ ∩
b⊥ ) ∪ (a ∪ b)) |
12 | | lea 160 |
. . . . . . . . . . . . 13
(a ∩ c) ≤ a |
13 | 12 | lecon 154 |
. . . . . . . . . . . 12
a⊥ ≤ (a ∩ c)⊥ |
14 | | lea 160 |
. . . . . . . . . . . . 13
(b ∩ c) ≤ b |
15 | 14 | lecon 154 |
. . . . . . . . . . . 12
b⊥ ≤ (b ∩ c)⊥ |
16 | 13, 15 | le2an 169 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) ≤ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) |
17 | 16 | leror 152 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) ≤
(((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) |
18 | 11, 17 | bltr 138 |
. . . . . . . . 9
1 ≤ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) |
19 | 6, 18 | lebi 145 |
. . . . . . . 8
(((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b)) =
1 |
20 | 19 | ran 78 |
. . . . . . 7
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = (1 ∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
21 | | ancom 74 |
. . . . . . 7
(1 ∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) ∩ 1) |
22 | | an1 106 |
. . . . . . 7
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) ∩ 1) = (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) |
23 | 20, 21, 22 | 3tr 65 |
. . . . . 6
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) |
24 | 23 | lor 70 |
. . . . 5
(((a ∩ c) ∩ (b
∩ c)) ∪ ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )))) = (((a ∩ c) ∩
(b ∩ c)) ∪ (((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
25 | | le1 146 |
. . . . . 6
(((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) ≤ 1 |
26 | | df-t 41 |
. . . . . . . 8
1 = (((a ∩ b) ∩ c)
∪ ((a ∩ b) ∩ c)⊥ ) |
27 | | anandir 115 |
. . . . . . . . 9
((a ∩ b) ∩ c) =
((a ∩ c) ∩ (b
∩ c)) |
28 | | oran3 93 |
. . . . . . . . . . . . 13
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
29 | 28 | ax-r5 38 |
. . . . . . . . . . . 12
((a⊥ ∪ b⊥ ) ∪ c⊥ ) = ((a ∩ b)⊥ ∪ c⊥ ) |
30 | | oran3 93 |
. . . . . . . . . . . 12
((a ∩ b)⊥ ∪ c⊥ ) = ((a ∩ b) ∩
c)⊥ |
31 | 29, 30 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∪ b⊥ ) ∪ c⊥ ) = ((a ∩ b) ∩
c)⊥ |
32 | 31 | ax-r1 35 |
. . . . . . . . . 10
((a ∩ b) ∩ c)⊥ = ((a⊥ ∪ b⊥ ) ∪ c⊥ ) |
33 | | ax-a2 31 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∪ c⊥ ) = (c⊥ ∪ (a⊥ ∪ b⊥ )) |
34 | 32, 33 | ax-r2 36 |
. . . . . . . . 9
((a ∩ b) ∩ c)⊥ = (c⊥ ∪ (a⊥ ∪ b⊥ )) |
35 | 27, 34 | 2or 72 |
. . . . . . . 8
(((a ∩ b) ∩ c)
∪ ((a ∩ b) ∩ c)⊥ ) = (((a ∩ c) ∩
(b ∩ c)) ∪ (c⊥ ∪ (a⊥ ∪ b⊥ ))) |
36 | 26, 35 | ax-r2 36 |
. . . . . . 7
1 = (((a ∩ c) ∩ (b
∩ c)) ∪ (c⊥ ∪ (a⊥ ∪ b⊥ ))) |
37 | | lear 161 |
. . . . . . . . . . 11
(a ∩ c) ≤ c |
38 | 37 | lecon 154 |
. . . . . . . . . 10
c⊥ ≤ (a ∩ c)⊥ |
39 | | lear 161 |
. . . . . . . . . . 11
(b ∩ c) ≤ c |
40 | 39 | lecon 154 |
. . . . . . . . . 10
c⊥ ≤ (b ∩ c)⊥ |
41 | 38, 40 | ler2an 173 |
. . . . . . . . 9
c⊥ ≤ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) |
42 | 41 | leror 152 |
. . . . . . . 8
(c⊥ ∪ (a⊥ ∪ b⊥ )) ≤ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )) |
43 | 42 | lelor 166 |
. . . . . . 7
(((a ∩ c) ∩ (b
∩ c)) ∪ (c⊥ ∪ (a⊥ ∪ b⊥ ))) ≤ (((a ∩ c) ∩
(b ∩ c)) ∪ (((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
44 | 36, 43 | bltr 138 |
. . . . . 6
1 ≤ (((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) |
45 | 25, 44 | lebi 145 |
. . . . 5
(((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))) = 1 |
46 | 24, 45 | ax-r2 36 |
. . . 4
(((a ∩ c) ∩ (b
∩ c)) ∪ ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )))) = 1 |
47 | | wlea 388 |
. . . . . . . . . . 11
((a ∩ c) ≤2 a) = 1 |
48 | | wleo 387 |
. . . . . . . . . . 11
(a ≤2 (a ∪ b)) =
1 |
49 | 47, 48 | wletr 396 |
. . . . . . . . . 10
((a ∩ c) ≤2 (a ∪ b)) =
1 |
50 | 49 | wlecom 409 |
. . . . . . . . 9
C ((a ∩ c), (a ∪
b)) = 1 |
51 | 50 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), (a ∩
c)) = 1 |
52 | 51 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), (a ∩
c)⊥ ) = 1 |
53 | | wlea 388 |
. . . . . . . . . . 11
((b ∩ c) ≤2 b) = 1 |
54 | | wleo 387 |
. . . . . . . . . . . 12
(b ≤2 (b ∪ a)) =
1 |
55 | | ax-a2 31 |
. . . . . . . . . . . . 13
(b ∪ a) = (a ∪
b) |
56 | 55 | bi1 118 |
. . . . . . . . . . . 12
((b ∪ a) ≡ (a
∪ b)) = 1 |
57 | 54, 56 | wlbtr 398 |
. . . . . . . . . . 11
(b ≤2 (a ∪ b)) =
1 |
58 | 53, 57 | wletr 396 |
. . . . . . . . . 10
((b ∩ c) ≤2 (a ∪ b)) =
1 |
59 | 58 | wlecom 409 |
. . . . . . . . 9
C ((b ∩ c), (a ∪
b)) = 1 |
60 | 59 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), (b ∩
c)) = 1 |
61 | 60 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), (b ∩
c)⊥ ) = 1 |
62 | 52, 61 | wcom2an 428 |
. . . . . 6
C ((a ∪ b), ((a ∩
c)⊥ ∩ (b ∩ c)⊥ )) = 1 |
63 | | wcomorr 412 |
. . . . . . . . 9
C (a, (a ∪ b)) =
1 |
64 | 63 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), a) =
1 |
65 | 64 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), a⊥ ) = 1 |
66 | | wcomorr 412 |
. . . . . . . . . 10
C (b, (b ∪ a)) =
1 |
67 | 66, 56 | wcbtr 411 |
. . . . . . . . 9
C (b, (a ∪ b)) =
1 |
68 | 67 | wcomcom 414 |
. . . . . . . 8
C ((a ∪ b), b) =
1 |
69 | 68 | wcomcom2 415 |
. . . . . . 7
C ((a ∪ b), b⊥ ) = 1 |
70 | 65, 69 | wcom2or 427 |
. . . . . 6
C ((a ∪ b), (a⊥ ∪ b⊥ )) = 1 |
71 | 62, 70 | wfh4 426 |
. . . . 5
((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) ≡ ((((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ )))) = 1 |
72 | 71 | wlor 368 |
. . . 4
((((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )))) ≡ (((a ∩ c) ∩
(b ∩ c)) ∪ ((((a
∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a ∪ b))
∩ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ (a⊥ ∪ b⊥ ))))) = 1 |
73 | 46, 72 | wwbmpr 206 |
. . 3
(((a ∩ c) ∩ (b
∩ c)) ∪ (((a ∩ c)⊥ ∩ (b ∩ c)⊥ ) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )))) = 1 |
74 | 5, 73 | ax-r2 36 |
. 2
((((a ∩ c) ∩ (b
∩ c)) ∪ ((a ∩ c)⊥ ∩ (b ∩ c)⊥ )) ∪ ((a ∪ b) ∩
(a⊥ ∪ b⊥ ))) = 1 |
75 | 3, 4, 74 | 3tr 65 |
1
((a ≡ b)⊥ ∪ ((a ∩ c)
≡ (b ∩ c))) = 1 |