Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wle2or | GIF version |
Description: Disjunction of 2 l.e.'s. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wle2.1 | (a ≤2 b) = 1 |
wle2.2 | (c ≤2 d) = 1 |
Ref | Expression |
---|---|
wle2or | ((a ∪ c) ≤2 (b ∪ d)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wle2.1 | . . 3 (a ≤2 b) = 1 | |
2 | 1 | wleror 393 | . 2 ((a ∪ c) ≤2 (b ∪ c)) = 1 |
3 | wle2.2 | . . . 4 (c ≤2 d) = 1 | |
4 | 3 | wleror 393 | . . 3 ((c ∪ b) ≤2 (d ∪ b)) = 1 |
5 | ax-a2 31 | . . . 4 (b ∪ c) = (c ∪ b) | |
6 | 5 | bi1 118 | . . 3 ((b ∪ c) ≡ (c ∪ b)) = 1 |
7 | ax-a2 31 | . . . 4 (b ∪ d) = (d ∪ b) | |
8 | 7 | bi1 118 | . . 3 ((b ∪ d) ≡ (d ∪ b)) = 1 |
9 | 4, 6, 8 | wle3tr1 399 | . 2 ((b ∪ c) ≤2 (b ∪ d)) = 1 |
10 | 2, 9 | wletr 396 | 1 ((a ∪ c) ≤2 (b ∪ d)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 1wt 8 ≤2 wle2 10 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 |
This theorem is referenced by: wledi 405 wledio 406 |
Copyright terms: Public domain | W3C validator |