Proof of Theorem wlem14
Step | Hyp | Ref
| Expression |
1 | | df-t 41 |
. . . 4
1 = (((a ∩ b⊥ ) ∪ a⊥ ) ∪ ((a ∩ b⊥ ) ∪ a⊥ )⊥
) |
2 | 1 | ax-r1 35 |
. . 3
(((a ∩ b⊥ ) ∪ a⊥ ) ∪ ((a ∩ b⊥ ) ∪ a⊥ )⊥ ) =
1 |
3 | | ax-a2 31 |
. . . 4
(((a ∩ b⊥ ) ∪ a⊥ )⊥ ∪
((a ∩ b⊥ ) ∪ a⊥ )) = (((a ∩ b⊥ ) ∪ a⊥ ) ∪ ((a ∩ b⊥ ) ∪ a⊥ )⊥
) |
4 | 3 | bi1 118 |
. . 3
((((a ∩ b⊥ ) ∪ a⊥ )⊥ ∪
((a ∩ b⊥ ) ∪ a⊥ )) ≡ (((a ∩ b⊥ ) ∪ a⊥ ) ∪ ((a ∩ b⊥ ) ∪ a⊥ )⊥ )) =
1 |
5 | 2, 4 | wwbmpr 206 |
. 2
(((a ∩ b⊥ ) ∪ a⊥ )⊥ ∪
((a ∩ b⊥ ) ∪ a⊥ )) = 1 |
6 | | df-t 41 |
. . . . . . . 8
1 = (((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) |
7 | 6 | ax-r1 35 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) = 1 |
8 | 7 | bi1 118 |
. . . . . 6
((((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) ≡ 1) =
1 |
9 | 8 | wlan 370 |
. . . . 5
((a⊥ ∩
(((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ )) ≡ (a⊥ ∩ 1)) = 1 |
10 | | anidm 111 |
. . . . . . . . . . 11
(a ∩ a) = a |
11 | 10 | bi1 118 |
. . . . . . . . . 10
((a ∩ a) ≡ a) =
1 |
12 | 11 | wr1 197 |
. . . . . . . . 9
(a ≡ (a ∩ a)) =
1 |
13 | | wleo 387 |
. . . . . . . . . 10
(a ≤2 (a ∪ b⊥ )) = 1 |
14 | | wleo 387 |
. . . . . . . . . 10
(a ≤2 (a ∪ b)) =
1 |
15 | 13, 14 | wle2an 404 |
. . . . . . . . 9
((a ∩ a) ≤2 ((a ∪ b⊥ ) ∩ (a ∪ b))) =
1 |
16 | 12, 15 | wbltr 397 |
. . . . . . . 8
(a ≤2 ((a ∪ b⊥ ) ∩ (a ∪ b))) =
1 |
17 | 16 | wlecom 409 |
. . . . . . 7
C (a, ((a ∪ b⊥ ) ∩ (a ∪ b))) =
1 |
18 | 17 | wcomcom3 416 |
. . . . . 6
C (a⊥ ,
((a ∪ b⊥ ) ∩ (a ∪ b))) =
1 |
19 | 17 | wcomcom4 417 |
. . . . . 6
C (a⊥ ,
((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) = 1 |
20 | 18, 19 | wfh1 423 |
. . . . 5
((a⊥ ∩
(((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ )) ≡ ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ))) = 1 |
21 | | an1 106 |
. . . . . 6
(a⊥ ∩ 1) =
a⊥ |
22 | 21 | bi1 118 |
. . . . 5
((a⊥ ∩ 1)
≡ a⊥ ) =
1 |
23 | 9, 20, 22 | w3tr2 375 |
. . . 4
(((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ )) ≡ a⊥ ) = 1 |
24 | 23 | wlor 368 |
. . 3
(((a ∩ b⊥ ) ∪ ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ))) ≡ ((a ∩ b⊥ ) ∪ a⊥ )) = 1 |
25 | 24 | wlor 368 |
. 2
((((a ∩ b⊥ ) ∪ a⊥ )⊥ ∪
((a ∩ b⊥ ) ∪ ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ )))) ≡ (((a ∩ b⊥ ) ∪ a⊥ )⊥ ∪
((a ∩ b⊥ ) ∪ a⊥ ))) = 1 |
26 | 5, 25 | wwbmpr 206 |
1
(((a ∩ b⊥ ) ∪ a⊥ )⊥ ∪
((a ∩ b⊥ ) ∪ ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ )))) = 1 |