ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fxnn0nninf Unicode version

Theorem fxnn0nninf 10211
Description: A function from NN0* into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
fxnn0nninf  |-  I :NN0* -->
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem fxnn0nninf
StepHypRef Expression
1 fxnn0nninf.g . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2 fxnn0nninf.f . . . . . 6  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
31, 2fnn0nninf 10210 . . . . 5  |-  ( F  o.  `' G ) : NN0 -->
4 pnfex 7819 . . . . . . . 8  |- +oo  e.  _V
5 omex 4507 . . . . . . . . 9  |-  om  e.  _V
6 1oex 6321 . . . . . . . . . 10  |-  1o  e.  _V
76snex 4109 . . . . . . . . 9  |-  { 1o }  e.  _V
85, 7xpex 4654 . . . . . . . 8  |-  ( om 
X.  { 1o }
)  e.  _V
94, 8f1osn 5407 . . . . . . 7  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } -1-1-onto-> {
( om  X.  { 1o } ) }
10 f1of 5367 . . . . . . 7  |-  ( {
<. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } -1-1-onto-> { ( om  X.  { 1o } ) }  ->  { <. +oo , 
( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) } )
119, 10ax-mp 5 . . . . . 6  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) }
12 infnninf 7022 . . . . . . 7  |-  ( om 
X.  { 1o }
)  e.
13 snssi 3664 . . . . . . 7  |-  ( ( om  X.  { 1o } )  e.  ->  { ( om 
X.  { 1o }
) }  C_ )
1412, 13ax-mp 5 . . . . . 6  |-  { ( om  X.  { 1o } ) }  C_
15 fss 5284 . . . . . 6  |-  ( ( { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } --> { ( om  X.  { 1o } ) }  /\  { ( om  X.  { 1o } ) }  C_ )  ->  { <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )
1611, 14, 15mp2an 422 . . . . 5  |-  { <. +oo ,  ( om  X.  { 1o } ) >. } : { +oo } -->
173, 16pm3.2i 270 . . . 4  |-  ( ( F  o.  `' G
) : NN0 -->  /\ 
{ <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )
18 disj 3411 . . . . 5  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
19 nn0nepnf 9048 . . . . . . 7  |-  ( x  e.  NN0  ->  x  =/= +oo )
2019neneqd 2329 . . . . . 6  |-  ( x  e.  NN0  ->  -.  x  = +oo )
21 elsni 3545 . . . . . 6  |-  ( x  e.  { +oo }  ->  x  = +oo )
2220, 21nsyl 617 . . . . 5  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
2318, 22mprgbir 2490 . . . 4  |-  ( NN0 
i^i  { +oo } )  =  (/)
24 fun2 5296 . . . 4  |-  ( ( ( ( F  o.  `' G ) : NN0 -->  /\  { <. +oo ,  ( om 
X.  { 1o }
) >. } : { +oo } --> )  /\  ( NN0  i^i  { +oo } )  =  (/) )  ->  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) --> )
2517, 23, 24mp2an 422 . . 3  |-  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) -->
26 fxnn0nninf.i . . . 4  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
2726feq1i 5265 . . 3  |-  ( I : ( NN0  u.  { +oo } ) -->  <->  ( ( F  o.  `' G
)  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) : ( NN0  u.  { +oo } ) --> )
2825, 27mpbir 145 . 2  |-  I : ( NN0  u.  { +oo } ) -->
29 df-xnn0 9041 . . 3  |- NN0*  =  ( NN0  u.  { +oo } )
3029feq2i 5266 . 2  |-  ( I :NN0* -->  <->  I : ( NN0  u.  { +oo } ) --> )
3128, 30mpbir 145 1  |-  I :NN0* -->
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1331    e. wcel 1480    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   ifcif 3474   {csn 3527   <.cop 3530    |-> cmpt 3989   omcom 4504    X. cxp 4537   `'ccnv 4538    o. ccom 4543   -->wf 5119   -1-1-onto->wf1o 5122  (class class class)co 5774  freccfrec 6287   1oc1o 6306  ℕxnninf 7005   0cc0 7620   1c1 7621    + caddc 7623   +oocpnf 7797   NN0cn0 8977  NN0*cxnn0 9040   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-xnn0 9041  df-z 9055  df-uz 9327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator