ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isum1p Unicode version

Theorem isum1p 11261
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isum1p.1  |-  Z  =  ( ZZ>= `  M )
isum1p.3  |-  ( ph  ->  M  e.  ZZ )
isum1p.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isum1p.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isum1p.6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isum1p  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) A ) )
Distinct variable groups:    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem isum1p
StepHypRef Expression
1 isum1p.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 eqid 2139 . . 3  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
3 isum1p.3 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
4 uzid 9340 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
53, 4syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
6 peano2uz 9378 . . . . 5  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
75, 6syl 14 . . . 4  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  M ) )
87, 1eleqtrrdi 2233 . . 3  |-  ( ph  ->  ( M  +  1 )  e.  Z )
9 isum1p.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
10 isum1p.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
11 isum1p.6 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
121, 2, 8, 9, 10, 11isumsplit 11260 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( sum_ k  e.  ( M ... ( ( M  + 
1 )  -  1 ) ) A  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) A ) )
133zcnd 9174 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
14 ax-1cn 7713 . . . . . . 7  |-  1  e.  CC
15 pncan 7968 . . . . . . 7  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
1613, 14, 15sylancl 409 . . . . . 6  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
1716oveq2d 5790 . . . . 5  |-  ( ph  ->  ( M ... (
( M  +  1 )  -  1 ) )  =  ( M ... M ) )
1817sumeq1d 11135 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  =  sum_ k  e.  ( M ... M
) A )
19 elfzuz 9802 . . . . . . 7  |-  ( k  e.  ( M ... M )  ->  k  e.  ( ZZ>= `  M )
)
2019, 1eleqtrrdi 2233 . . . . . 6  |-  ( k  e.  ( M ... M )  ->  k  e.  Z )
2120, 9sylan2 284 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( F `  k )  =  A )
2221sumeq2dv 11137 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) ( F `  k
)  =  sum_ k  e.  ( M ... M
) A )
23 fveq2 5421 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2423eleq1d 2208 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
259, 10eqeltrd 2216 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
2625ralrimiva 2505 . . . . . 6  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
275, 1eleqtrrdi 2233 . . . . . 6  |-  ( ph  ->  M  e.  Z )
2824, 26, 27rspcdva 2794 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  CC )
2923fsum1 11181 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( F `  M )  e.  CC )  ->  sum_ k  e.  ( M ... M ) ( F `  k )  =  ( F `  M ) )
303, 28, 29syl2anc 408 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) ( F `  k
)  =  ( F `
 M ) )
3118, 22, 303eqtr2d 2178 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  =  ( F `
 M ) )
3231oveq1d 5789 . 2  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( ( M  +  1 )  -  1 ) ) A  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A )  =  ( ( F `  M
)  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A ) )
3312, 32eqtrd 2172 1  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   dom cdm 4539   ` cfv 5123  (class class class)co 5774   CCcc 7618   1c1 7621    + caddc 7623    - cmin 7933   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218    ~~> cli 11047   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  isumnn0nn  11262  efsep  11397
  Copyright terms: Public domain W3C validator