ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letri3d Unicode version

Theorem letri3d 7363
Description: Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
letri3d  |-  ( ph  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )

Proof of Theorem letri3d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 letri3 7329 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
41, 2, 3syl2anc 403 1  |-  ( ph  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   class class class wbr 3805   RRcr 7112    <_ cle 7286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-pre-ltirr 7220  ax-pre-apti 7223
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-xp 4397  df-cnv 4399  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291
This theorem is referenced by:  add20  7715  msq11  8117  squeeze0  8119  suprzclex  8596  exbtwnz  9407  flid  9436  expcan  9811  dfabsmax  10322  zssinfcl  10569  gcd0id  10595  gcdneg  10598  gcdaddm  10600  gcdzeq  10636  lcmneg  10681  coprmgcdb  10695  qredeq  10703  pw2dvdseu  10771
  Copyright terms: Public domain W3C validator