ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  demoivreALT Unicode version

Theorem demoivreALT 11480
Description: Alternate proof of demoivre 11479. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
demoivreALT  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )

Proof of Theorem demoivreALT
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . 5  |-  ( x  =  0  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 ) )
2 oveq1 5781 . . . . . . 7  |-  ( x  =  0  ->  (
x  x.  A )  =  ( 0  x.  A ) )
32fveq2d 5425 . . . . . 6  |-  ( x  =  0  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  (
0  x.  A ) ) )
42fveq2d 5425 . . . . . . 7  |-  ( x  =  0  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  (
0  x.  A ) ) )
54oveq2d 5790 . . . . . 6  |-  ( x  =  0  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( 0  x.  A ) ) ) )
63, 5oveq12d 5792 . . . . 5  |-  ( x  =  0  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) )
71, 6eqeq12d 2154 . . . 4  |-  ( x  =  0  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) ) )
87imbi2d 229 . . 3  |-  ( x  =  0  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ 0 )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) ) ) )
9 oveq2 5782 . . . . 5  |-  ( x  =  k  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k ) )
10 oveq1 5781 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  A )  =  ( k  x.  A ) )
1110fveq2d 5425 . . . . . 6  |-  ( x  =  k  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  (
k  x.  A ) ) )
1210fveq2d 5425 . . . . . . 7  |-  ( x  =  k  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  (
k  x.  A ) ) )
1312oveq2d 5790 . . . . . 6  |-  ( x  =  k  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )
1411, 13oveq12d 5792 . . . . 5  |-  ( x  =  k  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )
159, 14eqeq12d 2154 . . . 4  |-  ( x  =  k  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) )
1615imbi2d 229 . . 3  |-  ( x  =  k  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
17 oveq2 5782 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) ) )
18 oveq1 5781 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
x  x.  A )  =  ( ( k  +  1 )  x.  A ) )
1918fveq2d 5425 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  (
( k  +  1 )  x.  A ) ) )
2018fveq2d 5425 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  (
( k  +  1 )  x.  A ) ) )
2120oveq2d 5790 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) ) )
2219, 21oveq12d 5792 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) )
2317, 22eqeq12d 2154 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) )
2423imbi2d 229 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) ) )
25 oveq2 5782 . . . . 5  |-  ( x  =  N  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^ N ) )
26 oveq1 5781 . . . . . . 7  |-  ( x  =  N  ->  (
x  x.  A )  =  ( N  x.  A ) )
2726fveq2d 5425 . . . . . 6  |-  ( x  =  N  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  ( N  x.  A )
) )
2826fveq2d 5425 . . . . . . 7  |-  ( x  =  N  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  ( N  x.  A )
) )
2928oveq2d 5790 . . . . . 6  |-  ( x  =  N  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( N  x.  A ) ) ) )
3027, 29oveq12d 5792 . . . . 5  |-  ( x  =  N  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )
3125, 30eqeq12d 2154 . . . 4  |-  ( x  =  N  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) ) )
3231imbi2d 229 . . 3  |-  ( x  =  N  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) ) ) )
33 coscl 11414 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
34 ax-icn 7715 . . . . . . 7  |-  _i  e.  CC
35 sincl 11413 . . . . . . 7  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
36 mulcl 7747 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
3734, 35, 36sylancr 410 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  e.  CC )
38 addcl 7745 . . . . . 6  |-  ( ( ( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC )  -> 
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC )
3933, 37, 38syl2anc 408 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC )
40 exp0 10297 . . . . 5  |-  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC  ->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  1 )
4139, 40syl 14 . . . 4  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  1 )
42 mul02 8149 . . . . . . . 8  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
4342fveq2d 5425 . . . . . . 7  |-  ( A  e.  CC  ->  ( cos `  ( 0  x.  A ) )  =  ( cos `  0
) )
44 cos0 11437 . . . . . . 7  |-  ( cos `  0 )  =  1
4543, 44syl6eq 2188 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  ( 0  x.  A ) )  =  1 )
4642fveq2d 5425 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  ( 0  x.  A ) )  =  ( sin `  0
) )
47 sin0 11436 . . . . . . . . 9  |-  ( sin `  0 )  =  0
4846, 47syl6eq 2188 . . . . . . . 8  |-  ( A  e.  CC  ->  ( sin `  ( 0  x.  A ) )  =  0 )
4948oveq2d 5790 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  ( 0  x.  A
) ) )  =  ( _i  x.  0 ) )
5034mul01i 8153 . . . . . . 7  |-  ( _i  x.  0 )  =  0
5149, 50syl6eq 2188 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  ( 0  x.  A
) ) )  =  0 )
5245, 51oveq12d 5792 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) )  =  ( 1  +  0 ) )
53 ax-1cn 7713 . . . . . 6  |-  1  e.  CC
5453addid1i 7904 . . . . 5  |-  ( 1  +  0 )  =  1
5552, 54syl6eq 2188 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) )  =  1 )
5641, 55eqtr4d 2175 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) )
57 expp1 10300 . . . . . . . . 9  |-  ( ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC  /\  k  e. 
NN0 )  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k )  x.  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ) )
5839, 57sylan 281 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
5958ancoms 266 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
6059adantr 274 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
61 oveq1 5781 . . . . . . 7  |-  ( ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  -> 
( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
6261adantl 275 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
63 nn0cn 8987 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
64 mulcl 7747 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  A  e.  CC )  ->  ( k  x.  A
)  e.  CC )
6563, 64sylan 281 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( k  x.  A
)  e.  CC )
66 sinadd 11443 . . . . . . . . . . . 12  |-  ( ( ( k  x.  A
)  e.  CC  /\  A  e.  CC )  ->  ( sin `  (
( k  x.  A
)  +  A ) )  =  ( ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
6765, 66sylancom 416 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
( k  x.  A
)  +  A ) )  =  ( ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
6833adantl 275 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  A
)  e.  CC )
69 sincl 11413 . . . . . . . . . . . . . 14  |-  ( ( k  x.  A )  e.  CC  ->  ( sin `  ( k  x.  A ) )  e.  CC )
7065, 69syl 14 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
k  x.  A ) )  e.  CC )
71 mulcom 7749 . . . . . . . . . . . . 13  |-  ( ( ( cos `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  =  ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) ) )
7268, 70, 71syl2anc 408 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  =  ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) ) )
7372oveq1d 5789 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) )  +  ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) ) )  =  ( ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
74 mulcl 7747 . . . . . . . . . . . . 13  |-  ( ( ( cos `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
7568, 70, 74syl2anc 408 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
76 coscl 11414 . . . . . . . . . . . . . 14  |-  ( ( k  x.  A )  e.  CC  ->  ( cos `  ( k  x.  A ) )  e.  CC )
7765, 76syl 14 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
k  x.  A ) )  e.  CC )
7835adantl 275 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  A
)  e.  CC )
79 mulcl 7747 . . . . . . . . . . . . 13  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC )
8077, 78, 79syl2anc 408 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC )
81 addcom 7899 . . . . . . . . . . . 12  |-  ( ( ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC  /\  ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  (
k  x.  A ) ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) )  =  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
8275, 80, 81syl2anc 408 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) )  +  ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
8367, 73, 823eqtr2d 2178 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
8483oveq2d 5790 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  ( sin `  ( ( k  x.  A )  +  A ) ) )  =  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) )
8584oveq2d 5790 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( sin `  (
( k  x.  A
)  +  A ) ) ) )  =  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
86 adddir 7757 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  +  1 )  x.  A )  =  ( ( k  x.  A )  +  ( 1  x.  A
) ) )
87 mulid2 7764 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
8887oveq2d 5790 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( k  x.  A
)  +  ( 1  x.  A ) )  =  ( ( k  x.  A )  +  A ) )
89883ad2ant3 1004 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  x.  A
)  +  ( 1  x.  A ) )  =  ( ( k  x.  A )  +  A ) )
9086, 89eqtrd 2172 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  +  1 )  x.  A )  =  ( ( k  x.  A )  +  A ) )
9163, 90syl3an1 1249 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  +  1 )  x.  A )  =  ( ( k  x.  A )  +  A ) )
9253, 91mp3an2 1303 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( k  +  1 )  x.  A
)  =  ( ( k  x.  A )  +  A ) )
9392fveq2d 5425 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
( k  +  1 )  x.  A ) )  =  ( cos `  ( ( k  x.  A )  +  A
) ) )
9492fveq2d 5425 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
( k  +  1 )  x.  A ) )  =  ( sin `  ( ( k  x.  A )  +  A
) ) )
9594oveq2d 5790 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) )  =  ( _i  x.  ( sin `  ( ( k  x.  A )  +  A ) ) ) )
9693, 95oveq12d 5792 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) )  =  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( sin `  (
( k  x.  A
)  +  A ) ) ) ) )
97 mulcl 7747 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( _i  x.  ( sin `  ( k  x.  A ) ) )  e.  CC )
9834, 97mpan 420 . . . . . . . . . . . . 13  |-  ( ( sin `  ( k  x.  A ) )  e.  CC  ->  (
_i  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
9965, 69, 983syl 17 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  ( sin `  ( k  x.  A ) ) )  e.  CC )
10033, 37jca 304 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC ) )
101100adantl 275 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC ) )
102 muladd 8146 . . . . . . . . . . . 12  |-  ( ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( _i  x.  ( sin `  ( k  x.  A ) ) )  e.  CC )  /\  ( ( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC ) )  ->  ( ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )  x.  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )  +  ( ( ( cos `  ( k  x.  A ) )  x.  ( _i  x.  ( sin `  A ) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
10377, 99, 101, 102syl21anc 1215 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )  +  ( ( ( cos `  ( k  x.  A ) )  x.  ( _i  x.  ( sin `  A ) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
10478, 34jctil 310 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  e.  CC  /\  ( sin `  A
)  e.  CC ) )
10570, 34jctil 310 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  e.  CC  /\  ( sin `  (
k  x.  A ) )  e.  CC ) )
106 mul4 7894 . . . . . . . . . . . . . . 15  |-  ( ( ( _i  e.  CC  /\  ( sin `  A
)  e.  CC )  /\  ( _i  e.  CC  /\  ( sin `  (
k  x.  A ) )  e.  CC ) )  ->  ( (
_i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( ( _i  x.  _i )  x.  ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )
107 ixi 8345 . . . . . . . . . . . . . . . 16  |-  ( _i  x.  _i )  = 
-u 1
108107oveq1i 5784 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( -u
1  x.  ( ( sin `  A )  x.  ( sin `  (
k  x.  A ) ) ) )
109106, 108syl6eq 2188 . . . . . . . . . . . . . 14  |-  ( ( ( _i  e.  CC  /\  ( sin `  A
)  e.  CC )  /\  ( _i  e.  CC  /\  ( sin `  (
k  x.  A ) )  e.  CC ) )  ->  ( (
_i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( -u
1  x.  ( ( sin `  A )  x.  ( sin `  (
k  x.  A ) ) ) ) )
110104, 105, 109syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
111110oveq2d 5790 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  ( ( _i  x.  ( sin `  A
) )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
112111oveq1d 5789 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  +  ( ( ( cos `  ( k  x.  A
) )  x.  (
_i  x.  ( sin `  A ) ) )  +  ( ( cos `  A )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( ( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
113 mul12 7891 . . . . . . . . . . . . . . . 16  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  _i  e.  CC  /\  ( sin `  A )  e.  CC )  ->  (
( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
11434, 113mp3an2 1303 . . . . . . . . . . . . . . 15  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
11577, 78, 114syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
116 mul12 7891 . . . . . . . . . . . . . . . 16  |-  ( ( ( cos `  A
)  e.  CC  /\  _i  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  ->  (
( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
11734, 116mp3an2 1303 . . . . . . . . . . . . . . 15  |-  ( ( ( cos `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
11868, 70, 117syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
119115, 118oveq12d 5792 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  (
_i  x.  ( sin `  A ) ) )  +  ( ( cos `  A )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( _i  x.  ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) ) )  +  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
120 adddi 7752 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC  /\  ( ( cos `  A )  x.  ( sin `  (
k  x.  A ) ) )  e.  CC )  ->  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )  =  ( ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) )  +  ( _i  x.  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
12134, 120mp3an1 1302 . . . . . . . . . . . . . 14  |-  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC  /\  ( ( cos `  A )  x.  ( sin `  (
k  x.  A ) ) )  e.  CC )  ->  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )  =  ( ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) )  +  ( _i  x.  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
12280, 75, 121syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  (
( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( _i  x.  ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) ) )  +  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
123119, 122eqtr4d 2175 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  (
_i  x.  ( sin `  A ) ) )  +  ( ( cos `  A )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
124123oveq2d 5790 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  (
-u 1  x.  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( ( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
125103, 112, 1243eqtrd 2176 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
126 mulcl 7747 . . . . . . . . . . . . . 14  |-  ( ( ( sin `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
12778, 70, 126syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
128 mulm1 8162 . . . . . . . . . . . . 13  |-  ( ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC  ->  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  =  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )
129127, 128syl 14 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  =  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )
130129oveq2d 5790 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  + 
-u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )
131130oveq1d 5789 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  (
-u 1  x.  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
132 mulcl 7747 . . . . . . . . . . . . 13  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( cos `  A )  e.  CC )  -> 
( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  e.  CC )
13377, 68, 132syl2anc 408 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  e.  CC )
134 negsub 8010 . . . . . . . . . . . 12  |-  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  e.  CC  /\  ( ( sin `  A )  x.  ( sin `  (
k  x.  A ) ) )  e.  CC )  ->  ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  -u ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  =  ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  -  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
135133, 127, 134syl2anc 408 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
136135oveq1d 5789 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  -u ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  -  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) ) )
137125, 131, 1363eqtrd 2176 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) ) )
138 cosadd 11444 . . . . . . . . . . . 12  |-  ( ( ( k  x.  A
)  e.  CC  /\  A  e.  CC )  ->  ( cos `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
13965, 138sylancom 416 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
140 mulcom 7749 . . . . . . . . . . . . 13  |-  ( ( ( sin `  (
k  x.  A ) )  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) )  =  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )
14170, 78, 140syl2anc 408 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) )  =  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )
142141oveq2d 5790 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  -  ( ( sin `  ( k  x.  A
) )  x.  ( sin `  A ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
143139, 142eqtrd 2172 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
144143oveq1d 5789 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  -  ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
145137, 144eqtr4d 2175 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( cos `  ( ( k  x.  A )  +  A ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) ) )
14685, 96, 1453eqtr4rd 2183 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( cos `  ( ( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) ) ) )
147146adantr 274 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( cos `  ( ( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) ) ) )
14860, 62, 1473eqtrd 2176 . . . . 5  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) )
149148exp31 361 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) ) )
150149a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )  ->  ( A  e.  CC  ->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) ) )
1518, 16, 24, 32, 56, 150nn0ind 9165 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) ) )
152151impcom 124 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621   _ici 7622    + caddc 7623    x. cmul 7625    - cmin 7933   -ucneg 7934   NN0cn0 8977   ^cexp 10292   sincsin 11350   cosccos 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator