Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemeq Unicode version

Theorem nninfsellemeq 13210
Description: Lemma for nninfsel 13213. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
nninfsel.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfsel.1  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
nninfsel.n  |-  ( ph  ->  N  e.  om )
nninfsel.qk  |-  ( ph  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
nninfsel.qn  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )
Assertion
Ref Expression
nninfsellemeq  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
Distinct variable groups:    i, N, k, n    Q, n, k, q    ph, i, n    i, q
Allowed substitution hints:    ph( k, q)    Q( i)    E( i, k, n, q)    N( q)

Proof of Theorem nninfsellemeq
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . . . . 5  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
21nninfself 13209 . . . 4  |-  E :
( 2o  ^m ) -->
32a1i 9 . . 3  |-  ( ph  ->  E : ( 2o 
^m )
--> )
4 nninfsel.q . . 3  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
53, 4ffvelrnd 5556 . 2  |-  ( ph  ->  ( E `  Q
)  e. )
6 nninfsel.n . 2  |-  ( ph  ->  N  e.  om )
7 fveq1 5420 . . . . . . . . . . 11  |-  ( q  =  Q  ->  (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) ) )
87eqeq1d 2148 . . . . . . . . . 10  |-  ( q  =  Q  ->  (
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
98ralbidv 2437 . . . . . . . . 9  |-  ( q  =  Q  ->  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
109ifbid 3493 . . . . . . . 8  |-  ( q  =  Q  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1110mpteq2dv 4019 . . . . . . 7  |-  ( q  =  Q  ->  (
n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
12 omex 4507 . . . . . . . 8  |-  om  e.  _V
1312mptex 5646 . . . . . . 7  |-  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  _V
1411, 1, 13fvmpt 5498 . . . . . 6  |-  ( Q  e.  ( 2o  ^m )  -> 
( E `  Q
)  =  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
154, 14syl 14 . . . . 5  |-  ( ph  ->  ( E `  Q
)  =  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
1615adantr 274 . . . 4  |-  ( (
ph  /\  j  e.  N )  ->  ( E `  Q )  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
17 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  n  =  j )
18 simplr 519 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  -> 
j  e.  N )
1917, 18eqeltrd 2216 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  n  e.  N )
20 nnord 4525 . . . . . . . . 9  |-  ( N  e.  om  ->  Ord  N )
21 vex 2689 . . . . . . . . . 10  |-  n  e. 
_V
22 ordelsuc 4421 . . . . . . . . . 10  |-  ( ( n  e.  _V  /\  Ord  N )  ->  (
n  e.  N  <->  suc  n  C_  N ) )
2321, 22mpan 420 . . . . . . . . 9  |-  ( Ord 
N  ->  ( n  e.  N  <->  suc  n  C_  N
) )
246, 20, 233syl 17 . . . . . . . 8  |-  ( ph  ->  ( n  e.  N  <->  suc  n  C_  N )
)
2524ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  -> 
( n  e.  N  <->  suc  n  C_  N )
)
2619, 25mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  suc  n  C_  N )
27 nninfsel.qk . . . . . . 7  |-  ( ph  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
2827ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
29 ssralv 3161 . . . . . 6  |-  ( suc  n  C_  N  ->  ( A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  A. k  e.  suc  n
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
3026, 28, 29sylc 62 . . . . 5  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
3130iftrued 3481 . . . 4  |-  ( ( ( ph  /\  j  e.  N )  /\  n  =  j )  ->  if ( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  1o )
32 simpr 109 . . . . 5  |-  ( (
ph  /\  j  e.  N )  ->  j  e.  N )
336adantr 274 . . . . 5  |-  ( (
ph  /\  j  e.  N )  ->  N  e.  om )
34 elnn 4519 . . . . 5  |-  ( ( j  e.  N  /\  N  e.  om )  ->  j  e.  om )
3532, 33, 34syl2anc 408 . . . 4  |-  ( (
ph  /\  j  e.  N )  ->  j  e.  om )
36 1onn 6416 . . . . 5  |-  1o  e.  om
3736a1i 9 . . . 4  |-  ( (
ph  /\  j  e.  N )  ->  1o  e.  om )
3816, 31, 35, 37fvmptd 5502 . . 3  |-  ( (
ph  /\  j  e.  N )  ->  (
( E `  Q
) `  j )  =  1o )
3938ralrimiva 2505 . 2  |-  ( ph  ->  A. j  e.  N  ( ( E `  Q ) `  j
)  =  1o )
4021sucid 4339 . . . . . . 7  |-  n  e. 
suc  n
4140a1i 9 . . . . . 6  |-  ( (
ph  /\  n  =  N )  ->  n  e.  suc  n )
42 1n0 6329 . . . . . . . 8  |-  1o  =/=  (/)
4342nesymi 2354 . . . . . . 7  |-  -.  (/)  =  1o
44 simpr 109 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  =  N )  ->  n  =  N )
4544eleq2d 2209 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  =  N )  ->  (
i  e.  n  <->  i  e.  N ) )
4645ifbid 3493 . . . . . . . . . . 11  |-  ( (
ph  /\  n  =  N )  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  N ,  1o ,  (/) ) )
4746mpteq2dv 4019 . . . . . . . . . 10  |-  ( (
ph  /\  n  =  N )  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
4847fveq2d 5425 . . . . . . . . 9  |-  ( (
ph  /\  n  =  N )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) ) )
49 nninfsel.qn . . . . . . . . . 10  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )
5049adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  n  =  N )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )
5148, 50eqtrd 2172 . . . . . . . 8  |-  ( (
ph  /\  n  =  N )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  (/) )
5251eqeq1d 2148 . . . . . . 7  |-  ( (
ph  /\  n  =  N )  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o  <->  (/)  =  1o ) )
5343, 52mtbiri 664 . . . . . 6  |-  ( (
ph  /\  n  =  N )  ->  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
54 elequ2 1691 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
i  e.  k  <->  i  e.  n ) )
5554ifbid 3493 . . . . . . . . . . 11  |-  ( k  =  n  ->  if ( i  e.  k ,  1o ,  (/) )  =  if (
i  e.  n ,  1o ,  (/) ) )
5655mpteq2dv 4019 . . . . . . . . . 10  |-  ( k  =  n  ->  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
5756fveq2d 5425 . . . . . . . . 9  |-  ( k  =  n  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
5857eqeq1d 2148 . . . . . . . 8  |-  ( k  =  n  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
5958notbid 656 . . . . . . 7  |-  ( k  =  n  ->  ( -.  ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
6059rspcev 2789 . . . . . 6  |-  ( ( n  e.  suc  n  /\  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )  ->  E. k  e.  suc  n  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6141, 53, 60syl2anc 408 . . . . 5  |-  ( (
ph  /\  n  =  N )  ->  E. k  e.  suc  n  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
62 rexnalim 2427 . . . . 5  |-  ( E. k  e.  suc  n  -.  ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  -.  A. k  e.  suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6361, 62syl 14 . . . 4  |-  ( (
ph  /\  n  =  N )  ->  -.  A. k  e.  suc  n
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6463iffalsed 3484 . . 3  |-  ( (
ph  /\  n  =  N )  ->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  (/) )
65 peano1 4508 . . . 4  |-  (/)  e.  om
6665a1i 9 . . 3  |-  ( ph  -> 
(/)  e.  om )
6715, 64, 6, 66fvmptd 5502 . 2  |-  ( ph  ->  ( ( E `  Q ) `  N
)  =  (/) )
685, 6, 39, 67nninfalllemn 13202 1  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686    C_ wss 3071   (/)c0 3363   ifcif 3474    |-> cmpt 3989   Ord word 4284   suc csuc 4287   omcom 4504   -->wf 5119   ` cfv 5123  (class class class)co 5774   1oc1o 6306   2oc2o 6307    ^m cmap 6542  ℕxnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007
This theorem is referenced by:  nninfsellemqall  13211
  Copyright terms: Public domain W3C validator