Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemeq GIF version

Theorem nninfsellemeq 13213
Description: Lemma for nninfsel 13216. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
nninfsel.n (𝜑𝑁 ∈ ω)
nninfsel.qk (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
nninfsel.qn (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
Assertion
Ref Expression
nninfsellemeq (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Distinct variable groups:   𝑖,𝑁,𝑘,𝑛   𝑄,𝑛,𝑘,𝑞   𝜑,𝑖,𝑛   𝑖,𝑞
Allowed substitution hints:   𝜑(𝑘,𝑞)   𝑄(𝑖)   𝐸(𝑖,𝑘,𝑛,𝑞)   𝑁(𝑞)

Proof of Theorem nninfsellemeq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . . . . 5 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
21nninfself 13212 . . . 4 𝐸:(2o𝑚)⟶ℕ
32a1i 9 . . 3 (𝜑𝐸:(2o𝑚)⟶ℕ)
4 nninfsel.q . . 3 (𝜑𝑄 ∈ (2o𝑚))
53, 4ffvelrnd 5556 . 2 (𝜑 → (𝐸𝑄) ∈ ℕ)
6 nninfsel.n . 2 (𝜑𝑁 ∈ ω)
7 fveq1 5420 . . . . . . . . . . 11 (𝑞 = 𝑄 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))))
87eqeq1d 2148 . . . . . . . . . 10 (𝑞 = 𝑄 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
98ralbidv 2437 . . . . . . . . 9 (𝑞 = 𝑄 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
109ifbid 3493 . . . . . . . 8 (𝑞 = 𝑄 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
1110mpteq2dv 4019 . . . . . . 7 (𝑞 = 𝑄 → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
12 omex 4507 . . . . . . . 8 ω ∈ V
1312mptex 5646 . . . . . . 7 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ V
1411, 1, 13fvmpt 5498 . . . . . 6 (𝑄 ∈ (2o𝑚) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
154, 14syl 14 . . . . 5 (𝜑 → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
1615adantr 274 . . . 4 ((𝜑𝑗𝑁) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
17 simpr 109 . . . . . . . 8 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
18 simplr 519 . . . . . . . 8 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑗𝑁)
1917, 18eqeltrd 2216 . . . . . . 7 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑛𝑁)
20 nnord 4525 . . . . . . . . 9 (𝑁 ∈ ω → Ord 𝑁)
21 vex 2689 . . . . . . . . . 10 𝑛 ∈ V
22 ordelsuc 4421 . . . . . . . . . 10 ((𝑛 ∈ V ∧ Ord 𝑁) → (𝑛𝑁 ↔ suc 𝑛𝑁))
2321, 22mpan 420 . . . . . . . . 9 (Ord 𝑁 → (𝑛𝑁 ↔ suc 𝑛𝑁))
246, 20, 233syl 17 . . . . . . . 8 (𝜑 → (𝑛𝑁 ↔ suc 𝑛𝑁))
2524ad2antrr 479 . . . . . . 7 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → (𝑛𝑁 ↔ suc 𝑛𝑁))
2619, 25mpbid 146 . . . . . 6 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → suc 𝑛𝑁)
27 nninfsel.qk . . . . . . 7 (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
2827ad2antrr 479 . . . . . 6 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
29 ssralv 3161 . . . . . 6 (suc 𝑛𝑁 → (∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
3026, 28, 29sylc 62 . . . . 5 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
3130iftrued 3481 . . . 4 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = 1o)
32 simpr 109 . . . . 5 ((𝜑𝑗𝑁) → 𝑗𝑁)
336adantr 274 . . . . 5 ((𝜑𝑗𝑁) → 𝑁 ∈ ω)
34 elnn 4519 . . . . 5 ((𝑗𝑁𝑁 ∈ ω) → 𝑗 ∈ ω)
3532, 33, 34syl2anc 408 . . . 4 ((𝜑𝑗𝑁) → 𝑗 ∈ ω)
36 1onn 6416 . . . . 5 1o ∈ ω
3736a1i 9 . . . 4 ((𝜑𝑗𝑁) → 1o ∈ ω)
3816, 31, 35, 37fvmptd 5502 . . 3 ((𝜑𝑗𝑁) → ((𝐸𝑄)‘𝑗) = 1o)
3938ralrimiva 2505 . 2 (𝜑 → ∀𝑗𝑁 ((𝐸𝑄)‘𝑗) = 1o)
4021sucid 4339 . . . . . . 7 𝑛 ∈ suc 𝑛
4140a1i 9 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 ∈ suc 𝑛)
42 1n0 6329 . . . . . . . 8 1o ≠ ∅
4342nesymi 2354 . . . . . . 7 ¬ ∅ = 1o
44 simpr 109 . . . . . . . . . . . . 13 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
4544eleq2d 2209 . . . . . . . . . . . 12 ((𝜑𝑛 = 𝑁) → (𝑖𝑛𝑖𝑁))
4645ifbid 3493 . . . . . . . . . . 11 ((𝜑𝑛 = 𝑁) → if(𝑖𝑛, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
4746mpteq2dv 4019 . . . . . . . . . 10 ((𝜑𝑛 = 𝑁) → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
4847fveq2d 5425 . . . . . . . . 9 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))))
49 nninfsel.qn . . . . . . . . . 10 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
5049adantr 274 . . . . . . . . 9 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
5148, 50eqtrd 2172 . . . . . . . 8 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = ∅)
5251eqeq1d 2148 . . . . . . 7 ((𝜑𝑛 = 𝑁) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o ↔ ∅ = 1o))
5343, 52mtbiri 664 . . . . . 6 ((𝜑𝑛 = 𝑁) → ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
54 elequ2 1691 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑖𝑘𝑖𝑛))
5554ifbid 3493 . . . . . . . . . . 11 (𝑘 = 𝑛 → if(𝑖𝑘, 1o, ∅) = if(𝑖𝑛, 1o, ∅))
5655mpteq2dv 4019 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
5756fveq2d 5425 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5857eqeq1d 2148 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
5958notbid 656 . . . . . . 7 (𝑘 = 𝑛 → (¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
6059rspcev 2789 . . . . . 6 ((𝑛 ∈ suc 𝑛 ∧ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o) → ∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6141, 53, 60syl2anc 408 . . . . 5 ((𝜑𝑛 = 𝑁) → ∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
62 rexnalim 2427 . . . . 5 (∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ¬ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6361, 62syl 14 . . . 4 ((𝜑𝑛 = 𝑁) → ¬ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6463iffalsed 3484 . . 3 ((𝜑𝑛 = 𝑁) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = ∅)
65 peano1 4508 . . . 4 ∅ ∈ ω
6665a1i 9 . . 3 (𝜑 → ∅ ∈ ω)
6715, 64, 6, 66fvmptd 5502 . 2 (𝜑 → ((𝐸𝑄)‘𝑁) = ∅)
685, 6, 39, 67nninfalllemn 13205 1 (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  Vcvv 2686  wss 3071  c0 3363  ifcif 3474  cmpt 3989  Ord word 4284  suc csuc 4287  ωcom 4504  wf 5119  cfv 5123  (class class class)co 5774  1oc1o 6306  2oc2o 6307  𝑚 cmap 6542  xnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007
This theorem is referenced by:  nninfsellemqall  13214
  Copyright terms: Public domain W3C validator