ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3 Unicode version

Theorem prarloclem3 6738
Description: Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6744. (Contributed by Jim Kingdon, 27-Oct-2019.)
Assertion
Ref Expression
prarloclem3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    A, j, y   
j, L, y    P, j, y    U, j, y   
y, X
Allowed substitution hint:    X( j)

Proof of Theorem prarloclem3
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 498 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  X  e.  om )
2 simpll 496 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  <. L ,  U >.  e. 
P. )
3 simplr 497 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  A  e.  L )
4 simprr 499 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  P  e.  Q. )
5 oveq2 5545 . . . . . . . . . . . . . 14  |-  ( x  =  X  ->  (
( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  X
) )
65opeq1d 3578 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  X ) ,  1o >. )
76eceq1d 6201 . . . . . . . . . . . 12  |-  ( x  =  X  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  )
87oveq1d 5552 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  .Q  P ) )
98oveq2d 5553 . . . . . . . . . 10  |-  ( x  =  X  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) ) )
109eleq1d 2148 . . . . . . . . 9  |-  ( x  =  X  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
1110anbi2d 452 . . . . . . . 8  |-  ( x  =  X  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1211rexbidv 2370 . . . . . . 7  |-  ( x  =  X  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1312imbi1d 229 . . . . . 6  |-  ( x  =  X  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
1413imbi2d 228 . . . . 5  |-  ( x  =  X  ->  (
( ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) ) )
15 oveq2 5545 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( ( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  (/) ) )
1615opeq1d 3578 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. )
1716eceq1d 6201 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  )
1817oveq1d 5552 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )
1918oveq2d 5553 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) ) )
2019eleq1d 2148 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
2120anbi2d 452 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
2221rexbidv 2370 . . . . . . 7  |-  ( x  =  (/)  ->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
2322imbi1d 229 . . . . . 6  |-  ( x  =  (/)  ->  ( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
24 oveq2 5545 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  z
) )
2524opeq1d 3578 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  z ) ,  1o >. )
2625eceq1d 6201 . . . . . . . . . . . 12  |-  ( x  =  z  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  )
2726oveq1d 5552 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( ( y  +o  2o )  +o  z
) ,  1o >. ]  ~Q  .Q  P ) )
2827oveq2d 5553 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) ) )
2928eleq1d 2148 . . . . . . . . 9  |-  ( x  =  z  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  z
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
3029anbi2d 452 . . . . . . . 8  |-  ( x  =  z  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
3130rexbidv 2370 . . . . . . 7  |-  ( x  =  z  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
3231imbi1d 229 . . . . . 6  |-  ( x  =  z  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
33 oveq2 5545 . . . . . . . . . . . . . 14  |-  ( x  =  suc  z  -> 
( ( y  +o  2o )  +o  x
)  =  ( ( y  +o  2o )  +o  suc  z ) )
3433opeq1d 3578 . . . . . . . . . . . . 13  |-  ( x  =  suc  z  ->  <. ( ( y  +o  2o )  +o  x
) ,  1o >.  = 
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. )
3534eceq1d 6201 . . . . . . . . . . . 12  |-  ( x  =  suc  z  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  )
3635oveq1d 5552 . . . . . . . . . . 11  |-  ( x  =  suc  z  -> 
( [ <. (
( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )
3736oveq2d 5553 . . . . . . . . . 10  |-  ( x  =  suc  z  -> 
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  =  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  .Q  P
) ) )
3837eleq1d 2148 . . . . . . . . 9  |-  ( x  =  suc  z  -> 
( ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
3938anbi2d 452 . . . . . . . 8  |-  ( x  =  suc  z  -> 
( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4039rexbidv 2370 . . . . . . 7  |-  ( x  =  suc  z  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4140imbi1d 229 . . . . . 6  |-  ( x  =  suc  z  -> 
( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
42 2onn 6153 . . . . . . . . . . . . . . . . 17  |-  2o  e.  om
43 nnacl 6117 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( y  +o  2o )  e.  om )
44 nna0 6111 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +o  2o )  e.  om  ->  (
( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4543, 44syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( ( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4642, 45mpan2 416 . . . . . . . . . . . . . . . 16  |-  ( y  e.  om  ->  (
( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4746opeq1d 3578 . . . . . . . . . . . . . . 15  |-  ( y  e.  om  ->  <. (
( y  +o  2o )  +o  (/) ) ,  1o >.  =  <. ( y  +o  2o ) ,  1o >. )
4847eceq1d 6201 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  =  [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  )
4948oveq1d 5552 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )
5049oveq2d 5553 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )  =  ( A  +Q  ( [
<. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) ) )
5150eleq1d 2148 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
5251anbi2d 452 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <-> 
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
5352rexbiia 2382 . . . . . . . . 9  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
54 opeq1 3572 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  <. y ,  1o >.  =  <. j ,  1o >. )
5554eceq1d 6201 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  [ <. y ,  1o >. ] ~Q0  =  [ <. j ,  1o >. ] ~Q0  )
5655oveq1d 5552 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )  =  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )
5756oveq2d 5553 . . . . . . . . . . . 12  |-  ( y  =  j  ->  ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  =  ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
) )
5857eleq1d 2148 . . . . . . . . . . 11  |-  ( y  =  j  ->  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  <->  ( A +Q0  ( [
<. j ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L ) )
59 oveq1 5544 . . . . . . . . . . . . . . . 16  |-  ( y  =  j  ->  (
y  +o  2o )  =  ( j  +o  2o ) )
6059opeq1d 3578 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  <. (
y  +o  2o ) ,  1o >.  =  <. ( j  +o  2o ) ,  1o >. )
6160eceq1d 6201 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  =  [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  )
6261oveq1d 5552 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )
6362oveq2d 5553 . . . . . . . . . . . 12  |-  ( y  =  j  ->  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) ) )
6463eleq1d 2148 . . . . . . . . . . 11  |-  ( y  =  j  ->  (
( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
6558, 64anbi12d 457 . . . . . . . . . 10  |-  ( y  =  j  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
6665cbvrexv 2579 . . . . . . . . 9  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6753, 66bitri 182 . . . . . . . 8  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6867biimpi 118 . . . . . . 7  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6968a1i 9 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
70 prarloclem3step 6737 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
7170ex 113 . . . . . . . 8  |-  ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
7271imim1d 74 . . . . . . 7  |-  ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7372ex 113 . . . . . 6  |-  ( z  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) ) )
7423, 32, 41, 69, 73finds2 4344 . . . . 5  |-  ( x  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7514, 74vtoclga 2665 . . . 4  |-  ( X  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7675imp 122 . . 3  |-  ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
771, 2, 3, 4, 76syl13anc 1172 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
78773impia 1136 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   E.wrex 2350   (/)c0 3252   <.cop 3403   suc csuc 4122   omcom 4333  (class class class)co 5537   1oc1o 6052   2oc2o 6053    +o coa 6056   [cec 6163    ~Q ceq 6520   Q.cnq 6521    +Q cplq 6523    .Q cmq 6524   ~Q0 ceq0 6527   +Q0 cplq0 6530   ·Q0 cmq0 6531   P.cnp 6532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-eprel 4046  df-id 4050  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-1o 6059  df-2o 6060  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-pli 6546  df-mi 6547  df-lti 6548  df-plpq 6585  df-mpq 6586  df-enq 6588  df-nqqs 6589  df-plqqs 6590  df-mqqs 6591  df-ltnqqs 6594  df-enq0 6665  df-nq0 6666  df-plq0 6668  df-mq0 6669  df-inp 6707
This theorem is referenced by:  prarloclem4  6739
  Copyright terms: Public domain W3C validator